Signal intensities in (1)H-(13)C CP and INEPT MAS NMR of liquid crystals.

Agnieszka Nowacka, Nils Bongartz, O H S Ollila, Tommy Nylander, Daniel Topgaard

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

56 Citeringar (SciVal)


Spectral editing with CP and INEPT in (13)C MAS NMR enables identification of rigid and mobile molecular segments in concentrated assemblies of surfactants, lipids, and/or proteins. In order to get stricter definitions of the terms "rigid" and "mobile", as well as resolving some ambiguities in the interpretation of CP and INEPT data, we have developed a theoretical model for calculating the CP and INEPT intensities as a function of rotational correlation time τc and C-H bond order parameter SCH, taking the effects of MAS into account. According to the model, the range of τc can at typical experimental settings (5kHz MAS, 1ms ramped CP at 80-100kHz B1 fields) be divided into four regimes: fast (τc<1ns), fast-intermediate (τc≈0.1μs), intermediate (τc≈1μs), and slow (τc>0.1ms). In the fast regime, the CP and INEPT intensities are independent of τc, but strongly dependent on |SCH|, with a cross-over from dominating INEPT to dominating CP at |SCH|>0.1. In the intermediate regime, neither CP nor INEPT yield signal on account of fast T1ρ and T2 relaxation. In both the fast-intermediate and slow regimes, there is exclusively CP signal. The theoretical predictions are tested by experiments on the glass-forming surfactant n-octyl-β-d-maltoside, for which τc can be varied continuously in the nano- to millisecond range by changing the temperature and the hydration level. The atomistic details of the surfactant dynamics are investigated with MD simulations. Based on the theoretical model, we propose a procedure for calculating CP and INEPT intensities directly from MD simulation trajectories. While MD shows that there is a continuous gradient of τc from the surfactant polar headgroup towards the methyl group at the end of the hydrocarbon chain, analysis of the experimental CP and INEPT data indicates that this gradient gets steeper with decreasing temperature and hydration level, eventually spanning four orders of magnitude at completely dry conditions.
Sidor (från-till)165-175
TidskriftJournal of Magnetic Resonance
StatusPublished - 2013

Ämnesklassifikation (UKÄ)

  • Fysikalisk kemi


Utforska forskningsämnen för ”Signal intensities in (1)H-(13)C CP and INEPT MAS NMR of liquid crystals.”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här