Slowly recurrent Collet–Eckmann maps with non-empty Fatou set

Magnus Aspenberg, Mats Bylund, Weiwei Cui

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

In this paper, we study rational Collet–Eckmann maps for which the Julia set is not the whole sphere and for which the critical points are recurrent at a slow rate. In families where the orders of the critical points are fixed, we prove that such maps are Lebesgue density points of hyperbolic maps. In particular, if all critical points are simple, these maps are Lebesgue density points of hyperbolic maps in the full space of rational maps of any degree (Formula presented.).

Originalspråkengelska
Artikelnummere12574
TidskriftProceedings of the London Mathematical Society
Volym128
Nummer1
DOI
StatusPublished - 2024 jan.

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Slowly recurrent Collet–Eckmann maps with non-empty Fatou set”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här