Solving Exact Cover Instances with Molecular-Motor-Powered Network-Based Biocomputation

Pradheebha Surendiran, Christoph Robert Meinecke, Aseem Salhotra, Georg Heldt, Jingyuan Zhu, Alf Månsson, Stefan Diez, Danny Reuter, Hillel Kugler, Heiner Linke, Till Korten

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Information processing by traditional, serial electronic processors consumes an ever-increasing part of the global electricity supply. An alternative, highly energy efficient, parallel computing paradigm is network-based biocomputation (NBC). In NBC a given combinatorial problem is encoded into a nanofabricated, modular network. Parallel exploration of the network by a very large number of independent molecular-motor-propelled protein filaments solves the encoded problem. Here we demonstrate a significant scale-up of this technology by solving four instances of Exact Cover, a nondeterministic polynomial time (NP) complete problem with applications in resource scheduling. The difficulty of the largest instances solved here is 128 times greater in comparison to the current state of the art for NBC.

Originalspråkengelska
Sidor (från-till)396-403
TidskriftACS Nanoscience AU
Volym2
Nummer5
Tidigt onlinedatum2022
DOI
StatusPublished - 2022

Ämnesklassifikation (UKÄ)

  • Nanoteknik
  • Datorteknik
  • Den kondenserade materiens fysik

Fingeravtryck

Utforska forskningsämnen för ”Solving Exact Cover Instances with Molecular-Motor-Powered Network-Based Biocomputation”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här