Some trade-off results for polynomial calculus

Chris Beck, Jakob Nordström, Bangsheng Tang

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

We present size-space trade-offs for the polynomial calculus (PC) and polynomial calculus resolution (PCR) proof systems. These are the first true size-space trade-offs in any algebraic proof system, showing that size and space cannot be simultaneously optimized in these models. We achieve this by extending essentially all known size-space trade-offs for resolution to PC and PCR. As such, our results cover space complexity from constant all the way up to exponential and yield mostly superpolynomial or even exponential size blow-ups. Since the upper bounds in our trade-offs hold for resolution, our work shows that there are formulas for which adding algebraic reasoning on top of resolution does not improve the trade-off properties in any significant way. As byproducts of our analysis, we also obtain trade-offs between space and degree in PC and PCR exactly matching analogous results for space versus width in resolution, and strengthen the resolution trade-offs in [Beame, Beck, and Impagliazzo '12] to apply also to k-CNF formulas.

Originalspråkengelska
Titel på värdpublikationSTOC 2013 - Proceedings of the 2013 ACM Symposium on Theory of Computing
FörlagAssociation for Computing Machinery (ACM)
Sidor813-822
Antal sidor10
ISBN (tryckt)9781450320290
DOI
StatusPublished - 2013
Externt publiceradJa
Evenemang45th Annual ACM Symposium on Theory of Computing, STOC 2013 - Palo Alto, CA, USA
Varaktighet: 2013 juni 12013 juni 4

Publikationsserier

NamnProceedings of the Annual ACM Symposium on Theory of Computing
FörlagACM
ISSN (tryckt)0737-8017

Konferens

Konferens45th Annual ACM Symposium on Theory of Computing, STOC 2013
Land/TerritoriumUSA
OrtPalo Alto, CA
Period2013/06/012013/06/04

Ämnesklassifikation (UKÄ)

  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Some trade-off results for polynomial calculus”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här