TY - JOUR
T1 - Specific Cation Effects on SCN– in Bulk Solution and at the Air−Water Interface
AU - Tesei, Giulio
AU - Aspelin, Vidar
AU - Lund, Mikael
PY - 2018/4/19
Y1 - 2018/4/19
N2 - The large and sparsely hydrated thiocyanate anion, SCN–, plays a prominent role in the study of specific ion effects in biological, colloid, and atmospheric chemistry due to its extreme position in the Hofmeister series. Using atomistic modeling of aqueous SCN– solutions, we provide novel insight at the molecular scale into the experimentally observed differences in ion pairing, clustering, reorientation dynamics, mutual diffusion, and solubility between the sodium, Na+, and the potassium, K+, salt. Compared to KSCN, NaSCN has a less pronounced tendency to ion pairing; nevertheless, at high salt concentrations, we observe a strong attraction between Na+ cations and the nitrogen end of SCN–, resulting in larger and more closely packed ion clusters. To accurately model aqueous SCN– solutions in computer simulations, we develop a thermodynamically consistent force field rooted in quantum-chemical calculations and refined using the Kirkwood–Buff theory. The force field is compatible with the extended simple point charge and three-point optimal point charge classical water models and reproduces experimental activity derivatives and air–water surface tension for a wide range of salt concentrations.
AB - The large and sparsely hydrated thiocyanate anion, SCN–, plays a prominent role in the study of specific ion effects in biological, colloid, and atmospheric chemistry due to its extreme position in the Hofmeister series. Using atomistic modeling of aqueous SCN– solutions, we provide novel insight at the molecular scale into the experimentally observed differences in ion pairing, clustering, reorientation dynamics, mutual diffusion, and solubility between the sodium, Na+, and the potassium, K+, salt. Compared to KSCN, NaSCN has a less pronounced tendency to ion pairing; nevertheless, at high salt concentrations, we observe a strong attraction between Na+ cations and the nitrogen end of SCN–, resulting in larger and more closely packed ion clusters. To accurately model aqueous SCN– solutions in computer simulations, we develop a thermodynamically consistent force field rooted in quantum-chemical calculations and refined using the Kirkwood–Buff theory. The force field is compatible with the extended simple point charge and three-point optimal point charge classical water models and reproduces experimental activity derivatives and air–water surface tension for a wide range of salt concentrations.
U2 - 10.1021/acs.jpcb.8b02303
DO - 10.1021/acs.jpcb.8b02303
M3 - Article
C2 - 29671594
SN - 1520-5207
VL - 122
SP - 5094
EP - 5105
JO - The Journal of Physical Chemistry Part B
JF - The Journal of Physical Chemistry Part B
IS - 19
ER -