Stationarity properties of neural networks

Sören Asmussen, Tatyana Turova

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

A neural model with N interacting neurons is considered. A firing of neuron i delays the firing times of all other neurons by the same random variable theta((i)), and in isolation the firings of the neuron occur according to a renewal process with generic interarrival time Y-(i). The stationary distribution of the N-vector of inhibitions at a firing time is computed, and involves waiting distributions of GI/G/1 queues and ladder height renewal processes. Further, the distribution of the period of activity of a neuron is studied for the symmetric case where theta((i)) and Y-(i) do not depend upon i. The tools are probabilistic and involve path decompositions, Palm theory and random walks.
Originalspråkengelska
Sidor (från-till)783-794
TidskriftJournal of Applied Probability
Volym35
Nummer4
StatusPublished - 1998

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Stationarity properties of neural networks”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här