Statistical and Functional Analysis of Genomic and Proteomic Data

Yingchun Liu

    Forskningsoutput: AvhandlingDoktorsavhandling (sammanläggning)

    34 Nedladdningar (Pure)

    Sammanfattning

    High-throughput technologies have led to an explosion in the availability of data at the genome scale. Such data provide important information about cellular processes and causes of human diseases, as well as for drug discovery. Deciphering the biologically relevant results from these data requires comprehensive analytical methods. In this dissertation, we present methods for gene and protein expression data analysis. Our major contributions include a method for differential in-gelelectrophoresis data analysis capable of removing protein-specific dye bias in the data, a method for finding unknown biological groups using expression data, and a method for identifying active and inactive signaling pathways in a gene expression signature based on the enrichment of downstream target genes of pathways.
    Originalspråkengelska
    KvalifikationDoktor
    Tilldelande institution
    Handledare
    • Ringnér, Markus, handledare
    Tilldelningsdatum2007 jan. 26
    Förlag
    ISBN (tryckt)91-628-6997-3
    StatusPublished - 2007

    Bibliografisk information

    Defence details

    Date: 2007-01-26
    Time: 10:15
    Place: Lecture hall F of the Department of Physics

    External reviewer(s)

    Name: Mukherjee, Sayan
    Title: Assistant Professor
    Affiliation: Duke University, USA

    ---

    Ämnesklassifikation (UKÄ)

    • Biofysik

    Fingeravtryck

    Utforska forskningsämnen för ”Statistical and Functional Analysis of Genomic and Proteomic Data”. Tillsammans bildar de ett unikt fingeravtryck.

    Citera det här