Statistical inference and time-frequency estimation for non-stationary signal classification

Forskningsoutput: AvhandlingDoktorsavhandling (sammanläggning)

25 Nedladdningar (Pure)

Sammanfattning

En signal är en fysisk kvantitet som varierar med någon oberoende variabel, t.ex. tid eller rum, som förmedlar information. En signal vars statistiska egenskaper är konstant i tid kallas stationär, medan signaler vars egenskaper varierar med tiden kallas icke-stationära, vilket är de vanligaste i naturen. Denna avhandling fokuserar på statistiska metoder för icke-stationära signaler. De applikationer som används inkluderar biomedicinska signaler, särskilt signaler uppmätta från den mänskliga hjärnan och hjärtat. Hjärnsignalerna registreras med elektroencefalografi (EEG), vilket är en metod för att mäta hjärnans elektriska aktivitet med hjälp av elektroder placerade på skalpen. Hjärtsignalerna erhålls genom att mäta variationen i tidsintervallet mellan på varandra följande hjärtslag, och de representerar ett fysiologiskt fenomen som kallas Heart Rate Variability (HRV).

Ny teknik gör det enklare att samla in information från hjärnan: till exempel kan bärbara EEG mössor ge mätningar medan en person utför sina vardagliga aktiviteter utan att behöva befinna sig i ett labb. Bärbara enheter som mäter elektrokardiogrammet och HRV har blivit mycket populära för att följa ens personliga hälsa. För att utnyttja den fulla potentialen av dessa tekniker måste det användas tillförlitliga metoder för att analysera de uppmätta signalerna. Min forskning har inriktat sig på att hitta nya metoder för att analysera och extrahera relevant information från icke-stationära signaler, till exempel EEG- och HRV-signaler.

Metoderna som behandlas i denna avhandling inkluderar stokastisk modellering, uppskattning av modellparametrarna, beräkning av tidsfrekvensrepresentationer och klassificeringsalgoritmer såsom neurala nätverk. Modellering har som syfte att beskriva data genom en matematisk representation som efterliknar ett verkligt fenomen eller process. Vi överväger stokastiska modeller, där en källa till slumpmässighet ingår. ``Alla modeller har fel'' i den mening att de endast är en uppskattning ut av verkligheten; det viktiga är att modellen är användbar för ändamålet. Simuleringar från modellen kan användas för testning, analys och prediktion av processbeteendet. Om vi simulerar från den stokastiska modellen flera gånger kommer resultaten inte att vara identiska. En stokastisk modell inkluderar parametrar som måste uppskattas utifrån uppgifterna, vilket efterfrågar lämpliga inferensmetoder. Tidsfrekvensanalys är en av de mest användbara metoderna vid behandling av icke-stationära signaler, där signalens frekvensspektrum varierar med tiden.

Årtionden av forskning har ägnats åt att förstå hur hjärnan fungerar. Strävan efter denna förståelse motiveras av ett enormt spann av applikationer, inklusive behandling av hjärtsjukdomar och utveckling av hjärn-dator gränssnitt som möjliggör direkt kommunikation mellan hjärnan och en extern enhet. Det är framförallt av största tillämpning och klinisk relevans att förbättra vår förståelse för hur den mänskliga hjärnan avkodar minnen. Även om kognitiva studier på minne har fått ökad uppmärksamhet under de senaste decennierna, finns det fortfarande lite säkra bevis på den tidsberoende dynamiken i minnesreaktivering. Genom att utveckla robusta verktyg för att i realtid fånga aktivering av minnen i inspelningar med hög tidsupplösning av hjärnaktivitet, kommer vi att kunna klassificera hjärnsignalerna beroende på vilken typ av minne som genererar dem, baserat på de neurala representationsskillnaderna. Mätningar av neural elektrisk aktivitet erhållen genom EEG tillhandahåller den nödvändiga höga tidsupplösningen och tidsfrekvensbilden, t.ex. ett spektrogram, bär värdefull information för att klassificera signalerna i olika kategorier. Eftersom brusnivån är stor krävs känsliga och skräddarsydda metoder. Under de senaste fyra åren har jag arbetat med att utveckla pålitliga metoder för att analysera dessa signaler och extrahera relevanta och robusta egenskaper för att fånga tids- och frekvensvariationer. Dessa egenskaper ges som input till maskininlärningsmetoder för att klassificera signalerna i olika kategorier av minnen.

HRV erbjuder viktig insikt i människans hälsa. Modifierad HRV har associerats med flera kliniska tillstånd. I synnerhet är reducerad högfrekvens-HRV-energi relaterad till uppmärksamhetsstörning, depression, olika ångestbesvär, långvarig arbetsrelaterad stress och utbrändhet. Att undersöka de olika faktorer som kan påverka HRV är viktigt eftersom betydelsen av de många olika måtten på HRV är komplexa och det finns en risk för felaktiga slutsatser.

De statistiska metoder som undersökts och utvecklats i denna avhandling har inte bara teoretisk relevans utan är också praktiska för analys av hälsorelaterade signaler.
Originalspråkengelska
KvalifikationDoktor
Tilldelande institution
  • Matematisk statistik
Handledare
  • Sandsten, Maria, handledare
Tilldelningsdatum2019 okt. 4
UtgivningsortLund, Sweden
Förlag
ISBN (tryckt)978-91-7895-274-8
ISBN (elektroniskt)978-91-7895-275-5
StatusPublished - 2019 sep. 9

Bibliografisk information

Defence details
Date: 2019-10-04
Time: 09:15
Place: Lecture hall MH:R, Matematikcentrum, Sölvegatan 18A, Lund
External reviewer(s)
Name: Baxevani, Anastassia
Title: Docent
Affiliation: University of Cyprus, Nicosia, Cyprus
---

Ämnesklassifikation (UKÄ)

  • Signalbehandling
  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Statistical inference and time-frequency estimation for non-stationary signal classification”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här