Sammanfattning
We examined the response of bacteria and proto- and metazooplankton to photomodified dissolved organic matter (DOM). Sterile filtered water from a eutrophic and a humic lake, that was either exposed to artificial ultraviolet (UV) radiation or kept dark, was added to semicontinuous laboratory microcosms that lasted for 7 weeks. Bacterial production responded positively to photochemical modification of DOM regardless of lake type. Final heterotrophic biomass (bacteria + proto + metazooplankton) was 47 +/- 5 and 37 +/- 5 mu g carbon (C) L-1 in microcosms with UV-exposed and unaltered eutrophic water DOM and 15 +/- 4 and 11 +/- 2 mu g C L-1 in microcosms with UV-exposed and unaltered humic water DOM, respectively. For the eutrophic water, there were no significant differences in proto- or metazooplankton biomasses between microcosms receiving UV-exposed or nonexposed DOM. Differences between eutrophic water microcosms were not significant when flagellates, ciliates, cladocerans, and copepods were examined separately. In microcosms with UV-exposed humic water, biomasses of heterotrophic flagellates, rotifers, nauplii, and cladocerans were higher than in those with nonexposed DOM. Higher final metazooplankton biomass following addition of UV-exposed humic water indicates that photochemically modified DOM can be effectively transferred through the microbial loop.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 101-108 |
Tidskrift | Limnology and Oceanography |
Volym | 51 |
Nummer | 1 |
Status | Published - 2006 |
Ämnesklassifikation (UKÄ)
- Ekologi