Streaming instability of multiple particle species: II. Numerical convergence with increasing particle number

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The streaming instability provides an efficient way of overcoming the growth barriers in the initial stages of the planet formation process. Considering the realistic case of a particle size distribution, the dynamics of the system is altered compared to the outcome of single size models. In order to understand the outcome of the multispecies streaming instability in detail, we perform a large parameter study in terms of particle number, particle size distribution, particle size range, initial metallicity, and initial particle scale height. We study vertically stratified systems and determine the metallicity threshold for filament formation. We compare these with a system where the initial particle distribution is unstratified and find that its evolution follows that of its stratified counterpart. We find that a change in the particle number does not result in significant variation in the efficiency and timing of filament formation. We also see that there is no clear trend for how varying the size distribution in combination with the particle size range changes the outcome of the multispecies streaming instability. Finally, we find that an initial metallicity of Zinit = 0.005 and Zinit = 0.01 both result in similar critical metallicity values for the start of filament formation. Our results show that the inclusion of a particle size distribution into streaming instability simulations, while changing the dynamics as compared to mono-disperse systems, does not result in overall unfavorable conditions for solid growth. We attribute the subdominant role of multiple species to the high-density conditions in the midplane, conditions under which linear stability analysis also predict little difference between single and multiple species.

Originalspråkengelska
ArtikelnummerA14
Antal sidor11
TidskriftAstronomy and Astrophysics
Volym653
DOI
StatusPublished - 2021 sep 1

Bibliografisk information

Funding Information:
cA knowledgements. We thank the anonymous referee for their comments that helped improve the manuscript. N.S. was funded by the “Bottlenecks for particle growth in turbulent aerosols” grant from the Knut and Alice Wallenberg Foundation (2014.0048). N.S. is thankful to Daniel Carrera for useful discussions. A.J. thanks the Swedish Research Council (grant 2018-0486), the Knut and Alice Wallenberg Foundation (grant 2017.0287) and the European Research Council (ERC Consolidator Grant 724687-PLANETESYS) for research support. The simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at LUNARC in Lund University.

Publisher Copyright:
© ESO 2021.

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Ämnesklassifikation (UKÄ)

  • Astronomi, astrofysik och kosmologi

Fingeravtryck

Utforska forskningsämnen för ”Streaming instability of multiple particle species: II. Numerical convergence with increasing particle number”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här