TY - JOUR
T1 - Stroke plane angle controls leading edge vortex in a bat-inspired flapper
AU - Koekkoek, Gide
AU - Muijres, Florian
AU - Johansson, Christoffer
AU - Stuiver, Melanie
AU - van Oudheusden, Bas W.
AU - Hedenström, Anders
PY - 2012
Y1 - 2012
N2 - The present interest in micro air vehicles has given the research on bat flight a new impulse. With the use of high speed cameras and improved PIV techniques, the kinematics and aerodynamics of bats have been studied in great detail. A robotic flapper makes it possible to do measurements by systematically changing only one parameter at a time and investigate the parameter space outside the natural flight envelope of bats without risking animal safety. For this study, a robotic flapper (RoBat), inspired by Leptonycteris yerbabuenae was developed and tested over the speed range 1-7 m/s, with variable maximum angles of attacks (AoA(max) = 55 degrees and 15 degrees, respectively) and constant AoA(max). = 55 degrees. These measurements show the presence of a leading edge vortex (LEV) for low speeds and a fully attached flow for high speeds at low AoA(max), which is in line with natural bat flight. A LEV occurs for AoA(max) = 55 degrees throughout the complete flight speed range, and throughout which the LEV circulation coefficient remains rather constant. This implies that bats and micro air vehicles could use LEVs for high load maneuvers also at relatively high flight speeds. However, at high flight speeds the LEV bursts, which causes increased drag, most likely due to a decrease in Strouhal number. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
AB - The present interest in micro air vehicles has given the research on bat flight a new impulse. With the use of high speed cameras and improved PIV techniques, the kinematics and aerodynamics of bats have been studied in great detail. A robotic flapper makes it possible to do measurements by systematically changing only one parameter at a time and investigate the parameter space outside the natural flight envelope of bats without risking animal safety. For this study, a robotic flapper (RoBat), inspired by Leptonycteris yerbabuenae was developed and tested over the speed range 1-7 m/s, with variable maximum angles of attacks (AoA(max) = 55 degrees and 15 degrees, respectively) and constant AoA(max). = 55 degrees. These measurements show the presence of a leading edge vortex (LEV) for low speeds and a fully attached flow for high speeds at low AoA(max), which is in line with natural bat flight. A LEV occurs for AoA(max) = 55 degrees throughout the complete flight speed range, and throughout which the LEV circulation coefficient remains rather constant. This implies that bats and micro air vehicles could use LEVs for high load maneuvers also at relatively high flight speeds. However, at high flight speeds the LEV bursts, which causes increased drag, most likely due to a decrease in Strouhal number. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
KW - Aerodynamics
KW - Bat flight
KW - Bio-inspired robot
KW - Leading edge vortex
KW - Micro
KW - air vehicle
U2 - 10.1016/j.crme.2011.11.013
DO - 10.1016/j.crme.2011.11.013
M3 - Article
SN - 1873-7234
VL - 340
SP - 95
EP - 106
JO - Comptes Rendus. Mecanique
JF - Comptes Rendus. Mecanique
IS - 1-2
ER -