TY - JOUR
T1 - Structural Characterization of a Series of N5-Ligated MnIV-Oxo Species
AU - Massie, Allyssa A.
AU - Denler, Melissa C.
AU - Singh, Reena
AU - Sinha, Arup
AU - Nordlander, Ebbe
AU - Jackson, Timothy A.
PY - 2020/1/16
Y1 - 2020/1/16
N2 - Analysis of extended X-ray absorption fine structure (EXAFS) data for the MnIV-oxo complexes [MnIV(O)(DMMN4py)]2+, [MnIV(O)(2pyN2B)]2+, and [MnIV(O)(2pyN2Q)]2+ (DMMN4py=N,N-bis(4-methoxy-3,5-dimethyl-2-pyridylmethyl)-N-bis(2-pyridyl)methylamine; 2pyN2B=(N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine, and 2pyN2Q=N,N-bis(2-pyridyl)-N,N-bis(2-quinolylmethyl)methanamine) afforded Mn=O and Mn−N bond lengths. The Mn=O distances for [MnIV(O)(DMMN4py)]2+ and [MnIV(O)(2pyN2B)]2+ are 1.72 and 1.70 Å, respectively. In contrast, the Mn=O distance for [MnIV(O)(2pyN2Q)]2+ was significantly longer (1.76 Å). We attribute this long distance to sample heterogeneity, which is reasonable given the reduced stability of [MnIV(O)(2pyN2Q)]2+. The Mn=O distances for [MnIV(O)(DMMN4py)]2+ and [MnIV(O)(2pyN2B)]2+ could only be well-reproduced using DFT-derived models that included strong hydrogen-bonds between second-sphere solvent 2,2,2-trifluoroethanol molecules and the oxo ligand. These results suggest an important role for the 2,2,2-trifluoroethanol solvent in stabilizing MnIV-oxo adducts. The DFT methods were extended to investigate the structure of the putative [MnIV(O)(N4py)]2+⋅(HOTf)2 adduct. These computations suggest that a MnIV-hydroxo species is most consistent with the available experimental data.
AB - Analysis of extended X-ray absorption fine structure (EXAFS) data for the MnIV-oxo complexes [MnIV(O)(DMMN4py)]2+, [MnIV(O)(2pyN2B)]2+, and [MnIV(O)(2pyN2Q)]2+ (DMMN4py=N,N-bis(4-methoxy-3,5-dimethyl-2-pyridylmethyl)-N-bis(2-pyridyl)methylamine; 2pyN2B=(N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine, and 2pyN2Q=N,N-bis(2-pyridyl)-N,N-bis(2-quinolylmethyl)methanamine) afforded Mn=O and Mn−N bond lengths. The Mn=O distances for [MnIV(O)(DMMN4py)]2+ and [MnIV(O)(2pyN2B)]2+ are 1.72 and 1.70 Å, respectively. In contrast, the Mn=O distance for [MnIV(O)(2pyN2Q)]2+ was significantly longer (1.76 Å). We attribute this long distance to sample heterogeneity, which is reasonable given the reduced stability of [MnIV(O)(2pyN2Q)]2+. The Mn=O distances for [MnIV(O)(DMMN4py)]2+ and [MnIV(O)(2pyN2B)]2+ could only be well-reproduced using DFT-derived models that included strong hydrogen-bonds between second-sphere solvent 2,2,2-trifluoroethanol molecules and the oxo ligand. These results suggest an important role for the 2,2,2-trifluoroethanol solvent in stabilizing MnIV-oxo adducts. The DFT methods were extended to investigate the structure of the putative [MnIV(O)(N4py)]2+⋅(HOTf)2 adduct. These computations suggest that a MnIV-hydroxo species is most consistent with the available experimental data.
KW - DFT calculations
KW - electronic structure
KW - oxido ligands
KW - spectroscopy
KW - X-ray absorption spectroscopy
U2 - 10.1002/chem.201904434
DO - 10.1002/chem.201904434
M3 - Article
C2 - 31693757
AN - SCOPUS:85076723841
SN - 1521-3765
VL - 26
SP - 900
EP - 912
JO - Chemistry: A European Journal
JF - Chemistry: A European Journal
IS - 4
ER -