Supervisory observer for parameter and state estimation of nonlinear systems using the DIRECT algorithm

Michelle S. Chong, Romain Postoyan, Sei Zhen Khong, Dragan Nesic

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

A supervisory observer is a multiple-model architecture, which estimates the parameters and the states of nonlinear systems. It consists of a bank of state observers, where each observer is designed for some nominal parameter values sampled in a known parameter set. A selection criterion is used to select a single observer at each time instant, which provides its state estimate and parameter value. The sampling of the parameter set plays a crucial role in this approach. Existing works require a sufficiently large number of parameter samples, but no explicit lower bound on this number is provided. The aim of this work is to overcome this limitation by sampling the parameter set automatically using an iterative global optimisation method, called DIviding RECTangles (DIRECT). Using this sampling policy, we start with 1 + 2np parameter samples where np is the dimension of the parameter set. Then, the algorithm iteratively adds samples to improve its estimation accuracy. Convergence guarantees are provided under the same assumptions as in previous works, which include a persistency of excitation condition. The efficacy of the supervisory observer with the DIRECT sampling policy is illustrated on a model of neural populations.

Originalspråkengelska
Titel på värdpublikation2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor2089-2094
Antal sidor6
Volym2018-January
ISBN (elektroniskt)9781509028733
DOI
StatusPublished - 2018 jan. 18
Evenemang56th IEEE Annual Conference on Decision and Control, CDC 2017 - Melbourne, Australien
Varaktighet: 2017 dec. 122017 dec. 15
Konferensnummer: 56
http://cdc2017.ieeecss.org/

Konferens

Konferens56th IEEE Annual Conference on Decision and Control, CDC 2017
Förkortad titelCDC 2017
Land/TerritoriumAustralien
OrtMelbourne
Period2017/12/122017/12/15
Internetadress

Ämnesklassifikation (UKÄ)

  • Reglerteknik

Fingeravtryck

Utforska forskningsämnen för ”Supervisory observer for parameter and state estimation of nonlinear systems using the DIRECT algorithm”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här