Surveillance of Disease Outbreaks Using Unsupervised Uni-Multivariate Anomaly Detection of Time-Series Symptoms

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Effectively identifying deviations in real-world medical time-series data is a critical endeavor, essential for early surveillance of disease outbreaks. This paper demonstrates the integration of time-series anomaly detection techniques to develop surveillance systems for disease outbreaks. Utilizing data from Sweden's telephone counseling service (1177), we first illustrate the trends in physical and mental symptoms recorded as contact reasons, offering valuable insights for outbreak detection. Subsequently, an advanced anomaly detection technique is applied incrementally to these time-series symptoms as univariate and multivariate approaches to assess the effectiveness of a machine learning-based method on early detection of the COVID-19 outbreak.

Originalspråkengelska
Titel på värdpublikationDigital Health and Informatics Innovations for Sustainable Health Care Systems - Proceedings of MIE 2024
RedaktörerJohn Mantas, Arie Hasman, George Demiris, Kaija Saranto, Michael Marschollek, Theodoros N. Arvanitis, Ivana Ognjanovic, Arriel Benis, Parisis Gallos, Emmanouil Zoulias, Elisavet Andrikopoulou
FörlagIOS Press
Sidor1916-1920
Antal sidor5
ISBN (elektroniskt)9781643685335
DOI
StatusPublished - 2024 aug.
Evenemang34th Medical Informatics Europe Conference, MIE 2024 - Athens, Grekland
Varaktighet: 2024 aug. 252024 aug. 29

Publikationsserier

NamnStudies in Health Technology and Informatics
Volym316
ISSN (tryckt)0926-9630
ISSN (elektroniskt)1879-8365

Konferens

Konferens34th Medical Informatics Europe Conference, MIE 2024
Land/TerritoriumGrekland
OrtAthens
Period2024/08/252024/08/29

Ämnesklassifikation (UKÄ)

  • Datavetenskap (Datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Surveillance of Disease Outbreaks Using Unsupervised Uni-Multivariate Anomaly Detection of Time-Series Symptoms”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här