Symmetries of quantum graphs and the inverse scattering problem

J Boman, Pavel Kurasov

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The Schrodinger equation on a graph together with a set of self-adjoint boundary conditions at the vertices determine a quantum graph. If the graph has one or more infinite edges one can associate a scattering matrix to the quantum graph. It is proved that if such a graph has internal symmetries then the boundary conditions, and hence the self-adjoint operator describing the quantum system, in general cannot be reconstructed from the scattering matrix. In addition it is shown that if the Schrodinger operator possesses internal symmetry then there exists a different quantum graph associated with the same scattering matrix.
Originalspråkengelska
Sidor (från-till)58-70
TidskriftAdvances in Applied Mathematics
Volym35
Nummer1
DOI
StatusPublished - 2005

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Symmetries of quantum graphs and the inverse scattering problem”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här