Sammanfattning
Populärvetenskaplig sammanfattning:
En studie publicerad av NASA:s Goddard Institute for Space Studies år 2019 visade att de genomsnittliga globala temperaturerna under de senaste fyra åren (2015-2018) var de högsta som någonsin registrerats i människans historia. Den nyheten passar väl in i de alarmerande prognoserna om global uppvärmning, och kräver snabba och radikala handlingar. Att studera “tekniskt relevanta III-V halvledares nanostrukturer och ytor med hjälp av synkrotronljus”, som är en omformulering av denna avhandlings titel, syftar till att ge ett litet bidrag till denna fråga. Det är dock svårt att se ett enkelt samband mellan titeln och den globala uppvärmningen. Att klargöra avhandlingens beståndsdelar kan kanske hjälpa till att belysa kopplingen.
Halvledare, som t.ex. kisel (Si), är material som finns närvarande i hela vårat vardagsliv. De har två typer av laddningar som rör sig inuti: elektroner (negativa) och "hål" (positiva). Genom att lägga till orenheter som kallas "dopants" i halvledare, kan man få "n-dopning" när de flesta av laddningar är elektroner, eller "p-dopning" när de är hål, beroende på dopant. p och n dopade halvledare kan kombineras för att skapa dioder och transistorer, som ofta används i datorer. Dessutom kan, i lysdioder (mer kända som LEDs), hål och elektroner återförenas och generera fotoner, som producerar ljus. Halvledare är också avgörande för att fånga upp solenergi: fotoner kan generera ström och denna effekt utnyttjas i solceller.
Framsteg inom halvledarteknik kan ha stor inverka på miljön: genom att öka prestandan hos apparaterna kan energiförbrukningen minskas markant, samtidigt som effektivare solceller kan ge renare energi.
I den här avhandlingen studeras prover av klass III-V halvledare som är nära att bli tillämpningsbara. III-V:er är föreningar av två (eller flera) element, en som tillhör III-gruppen (t.ex. In, Ga, och Al) och en av V-gruppen (t.ex. N, As, och P) av den periodiska tabellen. III-V halvledare har enastående ledningsförmåga och effektiva egenskaper för att generera ljus. Detta gör dem till perfekta kandidater för framtida enheter: till exempel är indiumarsenid (InAs) optimalt för transistorer, indiumfosfat (InP) för solceller och indiumgalliumnitrid (InGaN) för LEDs.
III-V:er har faktiskt varit kända under lång tid och undersökts redan före Si. Anledningen till att de inte har ersatt Si beror främst på den relativt höga kostnaden och den dåliga kvaliteten på deras ytor, vilket är avgörande för elektronik och solceller. Under de senaste decennierna, har forskning om dessa material upplevt en renässans, på grund av nya metoder för att förbättra ytorna och också för möjligheten att tillverka III-V halvledare som nanostrukturer, som t.ex. nanotrådar (NW) som studeras i denna avhandling. NWs är nålformade objekt som är cirka en mikrometer (1 μm = 0,000001 m) långa och med diametrar på cirka 30-200 nanometer (1 nm = 0,001 μm). De erbjuder en mycket flexibel grund för att kombinera olika III-V material utan att producera stora deformationsfält (som kan hämma prestandan) i samma nanostruktur. Många fysiska processer, som laddningstransport, är i sig effektivare i NWs än i materialets normala storlek.
För att utveckla banbrytande effektiva nanostrukturenheter behövs dock en fullständig förståelse av fysiken bakom dem. Framsteg måste uppnås i deras behandling genom att 1) förbättra ytkvaliteten, 2) kontrollera NW-dopningen, 3) övervaka den strukturella deformationen.
Karaktärisering av III-V ytor och NWs är därför nödvändigt, men detta är extremt utmanande på grund av deras ringa storlekar. Avhandlingen föreslår ett steg framåt i denna riktning genom att använda en kombination av avancerade tekniker baserade på röntgenljus från en synkrotronkälla. Röntgenljus som produceras av en synkrotron - en cyklisk partikelaccelerator - är optimala på grund av dess mycket höga intensitet, som är utmärkt för detaljerade kemiska och strukturella analyser och även mikroskopi, när ljusstrålen är ordentligt fokuserad.
En ny behandling för att förbättra kvaliteten på InAs-ytor undersöktes med en teknik som kallas fotoelektronspektroskopi (XPS). Denna metod är baserad på insamling av provelektroner som matas ut av röntgenljuset, som fungerar som kemiska fingeravtryck. Genom att utveckla denna teknik, studerades den ytkemiska utvecklingen under depositionen av ett högkvalitativt oxidskikt i realtid. Resultaten visade de viktiga aspekterna i denna behandling. XPS användes också för att studera dopants på NWs ytor, som visade sig ha en stark effekt på ytan egenskaper.
Resultatet av dopning i NWs är generellt svårt att förutsäga och mäta. För första gången har en röntgenstråle med ett fokus på bara några tiotals nanometer använts för att kartlägga dopants-distribution i III-V NWs. Dopants räknades tack vare deras emission av karakteristiskt röntgenljus, en effekt som kallas fluorescens. Resultaten är användbara för att förstå hur man optimerar tillverkningen för att få den önskade dopants-distributionen för effektiva NW-solceller.
Slutligen studerades de deformationsseffekter som orsakas av tillverkning av NWs-mönster som används för LEDs med en teknik som kallas full field röntgens-diffraktionsmikroskopi. Denna metod är baserad på diffraktion, en reflektion av röntgenstrålar som endast förekommer i specifika riktningar, beroende på atomavståndet, som självt beror på deformation. För första gången erhölls bilder på InGaN NW-mönster med kontrasten som ges av deras olika deformationer. Denna studie hjälper till att hitta de bästa parametrarna för att tillverka högkvalitativa NW LEDs.
Denna avhandling utforskar ett brett spektrum av viktiga aspekter i specifika III-V nanostrukturer. Användningen av moderna röntgenkarakteriseringsverktyg syftar till att ge konkreta svar för att förbättra dessa material och enheter, med förhoppningen att göra dem mer effektiva.
English popular science summary:
A study published by the Goddard Institute for Space Studies of NASA in 2019 put in evidence that the average global temperatures of the last four years (2015-2018) were the highest ever recorded in human history. This recent news fits well into the alarming forecasts on global warming, demanding prompt and radical interventions. Studying “technologically relevant III-V semiconductor nanostructures and surfaces with techniques based on synchrotron radiation”, which is a rephrasing of the title of this thesis, aims to give a little contribution to this issue. Apparently, there is not a straightforward connection between the title and the global warming: a clarification on the elements of this thesis can help in highlighting the link.
Semiconductors, like for instance silicon (Si), are materials present in almost all aspects of our everyday life. They have two different types of charges that can move in the solid: electrons (negative) and “holes” (positive). By adding impurities called “dopants” into semiconductors, one can obtain “n type doping” when most of the charge carriers are electrons, or “p type doping” when they are holes, depending on the dopant. p and n doped semiconductors can be combined together to create diodes and transistors, widely used in computers. Moreover, in the class of the light emitting diodes, better known as LEDs, holes and electrons can recombine together generating photons, that is producing light. Semiconductors are also crucial in harvesting solar energy: the photons can generate a current and this effect is exploited in solar cells.
Advances in semiconductor technology can have a big impact for the environment: by boosting the performance of devices, the energy consumption can be sensibly decreased, while more efficient solar cells can provide more clean energy.
Here, samples of the class of the III-V semiconductors close to realistic applications are studied. III-Vs are compounds of two (or more) elements, one belonging to the III group (for example In, Ga, and Al) and one of the V group (for example N, As, and P) of the periodic table. III-V semiconductors have outstanding charge transport and charge-photon conversion properties, making them perfect candidates for future devices: for example, indium arsenide (InAs) is optimal for transistors, indium phosphate (InP) for solar cells and indium gallium nitride (InGaN) for LEDs.
III-Vs have actually been known for a long time and investigated even before Si. The reason why they have not supplanted Si is mainly due to the relatively high cost and to the poor quality of their surfaces, which is crucial for electronics and solar cells. In the last decades, the research on these materials experienced a renaissance, due to new methods for improving the surfaces and especially for the possibility of implementing III-V semiconductors in nanostructures, like for instance the nanowires (NW) studied in this thesis. NWs are needle shaped objects ca. 1 micron (1 µm = 0.000001 m) long and with diameters of ca. 30-200 nanometers (1 nm = 0.001 µm), and they offer a very flexible platform to combine different III-V materials avoiding large strain fields (that can hamper performances) in the same nanostructure. Many physical processes, like charge transport, are intrinsically more efficient in NWs than in their bulk counterpart.
However, for developing cutting-edge efficient nanostructure devices, a complete understanding of the physics behind them is still needed. Advances need to be achieved in their processing by 1) improving the surface quality, 2) controlling the NW doping, 3) monitoring the structural strain.
A characterization of III-V surfaces and NWs is therefore needed, but this is very challenging due to their small size. This thesis proposes a step forward in this direction by using a combination of advanced techniques based on X-rays from a synchrotron source. The X-rays produced by a synchrotron - a cyclic particle accelerator - are ideal because of their very high intensity, excellent for detailed chemical and structural analyses and even microscopy, when focused properly.
A new processing to improve the quality of InAs surfaces was investigated with a technique called synchrotron based X-ray photoelectron spectroscopy (XPS). This method is based on the collection of the sample electrons ejected by the X-rays, acting as chemical fingerprint. By pushing this technique to its limits, the surface chemistry evolution during the deposition of a high quality oxide layer was studied in real time. The results showed the critical aspects in this industrially relevant processing. XPS was also used for studying the dopants on the surface of NWs, that were found to have a strong effect on the surface properties.
The doping incorporation in NWs is in general difficult to predict and measure. For the first time, an X-ray beam with a focal spot of only few tens of nanometers was used to map the dopant distribution in III-V NWs. The dopants were identified and counted thanks to their emission of characteristic X-rays, an effect called fluorescence. The results are useful to understand how to tailor the processing to have the desired dopant distribution for very efficient NW solar cells.
Finally, the strain effects caused by patterning arrays of NWs used for LEDs were studied with a technique called full field X-ray diffraction microscopy. This method is based on diffraction, a selective reflection of X-rays that occurs only in specific directions, depending on the atomic spacing: if there is strain, the atomic spacing (and the diffraction angle) is different. For the first time, images of InGaN NW arrays were obtained with the contrast given by their different strain. This study helps to find the optimal parameters for fabricating high quality NW LEDs.
This thesis explores a wide range of criticalities in specific III-V nanostructures. The use of modern X-ray based characterization tools is aimed to give concrete answers to improve these materials and devices, with the hope of making them more energetically efficient.
En studie publicerad av NASA:s Goddard Institute for Space Studies år 2019 visade att de genomsnittliga globala temperaturerna under de senaste fyra åren (2015-2018) var de högsta som någonsin registrerats i människans historia. Den nyheten passar väl in i de alarmerande prognoserna om global uppvärmning, och kräver snabba och radikala handlingar. Att studera “tekniskt relevanta III-V halvledares nanostrukturer och ytor med hjälp av synkrotronljus”, som är en omformulering av denna avhandlings titel, syftar till att ge ett litet bidrag till denna fråga. Det är dock svårt att se ett enkelt samband mellan titeln och den globala uppvärmningen. Att klargöra avhandlingens beståndsdelar kan kanske hjälpa till att belysa kopplingen.
Halvledare, som t.ex. kisel (Si), är material som finns närvarande i hela vårat vardagsliv. De har två typer av laddningar som rör sig inuti: elektroner (negativa) och "hål" (positiva). Genom att lägga till orenheter som kallas "dopants" i halvledare, kan man få "n-dopning" när de flesta av laddningar är elektroner, eller "p-dopning" när de är hål, beroende på dopant. p och n dopade halvledare kan kombineras för att skapa dioder och transistorer, som ofta används i datorer. Dessutom kan, i lysdioder (mer kända som LEDs), hål och elektroner återförenas och generera fotoner, som producerar ljus. Halvledare är också avgörande för att fånga upp solenergi: fotoner kan generera ström och denna effekt utnyttjas i solceller.
Framsteg inom halvledarteknik kan ha stor inverka på miljön: genom att öka prestandan hos apparaterna kan energiförbrukningen minskas markant, samtidigt som effektivare solceller kan ge renare energi.
I den här avhandlingen studeras prover av klass III-V halvledare som är nära att bli tillämpningsbara. III-V:er är föreningar av två (eller flera) element, en som tillhör III-gruppen (t.ex. In, Ga, och Al) och en av V-gruppen (t.ex. N, As, och P) av den periodiska tabellen. III-V halvledare har enastående ledningsförmåga och effektiva egenskaper för att generera ljus. Detta gör dem till perfekta kandidater för framtida enheter: till exempel är indiumarsenid (InAs) optimalt för transistorer, indiumfosfat (InP) för solceller och indiumgalliumnitrid (InGaN) för LEDs.
III-V:er har faktiskt varit kända under lång tid och undersökts redan före Si. Anledningen till att de inte har ersatt Si beror främst på den relativt höga kostnaden och den dåliga kvaliteten på deras ytor, vilket är avgörande för elektronik och solceller. Under de senaste decennierna, har forskning om dessa material upplevt en renässans, på grund av nya metoder för att förbättra ytorna och också för möjligheten att tillverka III-V halvledare som nanostrukturer, som t.ex. nanotrådar (NW) som studeras i denna avhandling. NWs är nålformade objekt som är cirka en mikrometer (1 μm = 0,000001 m) långa och med diametrar på cirka 30-200 nanometer (1 nm = 0,001 μm). De erbjuder en mycket flexibel grund för att kombinera olika III-V material utan att producera stora deformationsfält (som kan hämma prestandan) i samma nanostruktur. Många fysiska processer, som laddningstransport, är i sig effektivare i NWs än i materialets normala storlek.
För att utveckla banbrytande effektiva nanostrukturenheter behövs dock en fullständig förståelse av fysiken bakom dem. Framsteg måste uppnås i deras behandling genom att 1) förbättra ytkvaliteten, 2) kontrollera NW-dopningen, 3) övervaka den strukturella deformationen.
Karaktärisering av III-V ytor och NWs är därför nödvändigt, men detta är extremt utmanande på grund av deras ringa storlekar. Avhandlingen föreslår ett steg framåt i denna riktning genom att använda en kombination av avancerade tekniker baserade på röntgenljus från en synkrotronkälla. Röntgenljus som produceras av en synkrotron - en cyklisk partikelaccelerator - är optimala på grund av dess mycket höga intensitet, som är utmärkt för detaljerade kemiska och strukturella analyser och även mikroskopi, när ljusstrålen är ordentligt fokuserad.
En ny behandling för att förbättra kvaliteten på InAs-ytor undersöktes med en teknik som kallas fotoelektronspektroskopi (XPS). Denna metod är baserad på insamling av provelektroner som matas ut av röntgenljuset, som fungerar som kemiska fingeravtryck. Genom att utveckla denna teknik, studerades den ytkemiska utvecklingen under depositionen av ett högkvalitativt oxidskikt i realtid. Resultaten visade de viktiga aspekterna i denna behandling. XPS användes också för att studera dopants på NWs ytor, som visade sig ha en stark effekt på ytan egenskaper.
Resultatet av dopning i NWs är generellt svårt att förutsäga och mäta. För första gången har en röntgenstråle med ett fokus på bara några tiotals nanometer använts för att kartlägga dopants-distribution i III-V NWs. Dopants räknades tack vare deras emission av karakteristiskt röntgenljus, en effekt som kallas fluorescens. Resultaten är användbara för att förstå hur man optimerar tillverkningen för att få den önskade dopants-distributionen för effektiva NW-solceller.
Slutligen studerades de deformationsseffekter som orsakas av tillverkning av NWs-mönster som används för LEDs med en teknik som kallas full field röntgens-diffraktionsmikroskopi. Denna metod är baserad på diffraktion, en reflektion av röntgenstrålar som endast förekommer i specifika riktningar, beroende på atomavståndet, som självt beror på deformation. För första gången erhölls bilder på InGaN NW-mönster med kontrasten som ges av deras olika deformationer. Denna studie hjälper till att hitta de bästa parametrarna för att tillverka högkvalitativa NW LEDs.
Denna avhandling utforskar ett brett spektrum av viktiga aspekter i specifika III-V nanostrukturer. Användningen av moderna röntgenkarakteriseringsverktyg syftar till att ge konkreta svar för att förbättra dessa material och enheter, med förhoppningen att göra dem mer effektiva.
English popular science summary:
A study published by the Goddard Institute for Space Studies of NASA in 2019 put in evidence that the average global temperatures of the last four years (2015-2018) were the highest ever recorded in human history. This recent news fits well into the alarming forecasts on global warming, demanding prompt and radical interventions. Studying “technologically relevant III-V semiconductor nanostructures and surfaces with techniques based on synchrotron radiation”, which is a rephrasing of the title of this thesis, aims to give a little contribution to this issue. Apparently, there is not a straightforward connection between the title and the global warming: a clarification on the elements of this thesis can help in highlighting the link.
Semiconductors, like for instance silicon (Si), are materials present in almost all aspects of our everyday life. They have two different types of charges that can move in the solid: electrons (negative) and “holes” (positive). By adding impurities called “dopants” into semiconductors, one can obtain “n type doping” when most of the charge carriers are electrons, or “p type doping” when they are holes, depending on the dopant. p and n doped semiconductors can be combined together to create diodes and transistors, widely used in computers. Moreover, in the class of the light emitting diodes, better known as LEDs, holes and electrons can recombine together generating photons, that is producing light. Semiconductors are also crucial in harvesting solar energy: the photons can generate a current and this effect is exploited in solar cells.
Advances in semiconductor technology can have a big impact for the environment: by boosting the performance of devices, the energy consumption can be sensibly decreased, while more efficient solar cells can provide more clean energy.
Here, samples of the class of the III-V semiconductors close to realistic applications are studied. III-Vs are compounds of two (or more) elements, one belonging to the III group (for example In, Ga, and Al) and one of the V group (for example N, As, and P) of the periodic table. III-V semiconductors have outstanding charge transport and charge-photon conversion properties, making them perfect candidates for future devices: for example, indium arsenide (InAs) is optimal for transistors, indium phosphate (InP) for solar cells and indium gallium nitride (InGaN) for LEDs.
III-Vs have actually been known for a long time and investigated even before Si. The reason why they have not supplanted Si is mainly due to the relatively high cost and to the poor quality of their surfaces, which is crucial for electronics and solar cells. In the last decades, the research on these materials experienced a renaissance, due to new methods for improving the surfaces and especially for the possibility of implementing III-V semiconductors in nanostructures, like for instance the nanowires (NW) studied in this thesis. NWs are needle shaped objects ca. 1 micron (1 µm = 0.000001 m) long and with diameters of ca. 30-200 nanometers (1 nm = 0.001 µm), and they offer a very flexible platform to combine different III-V materials avoiding large strain fields (that can hamper performances) in the same nanostructure. Many physical processes, like charge transport, are intrinsically more efficient in NWs than in their bulk counterpart.
However, for developing cutting-edge efficient nanostructure devices, a complete understanding of the physics behind them is still needed. Advances need to be achieved in their processing by 1) improving the surface quality, 2) controlling the NW doping, 3) monitoring the structural strain.
A characterization of III-V surfaces and NWs is therefore needed, but this is very challenging due to their small size. This thesis proposes a step forward in this direction by using a combination of advanced techniques based on X-rays from a synchrotron source. The X-rays produced by a synchrotron - a cyclic particle accelerator - are ideal because of their very high intensity, excellent for detailed chemical and structural analyses and even microscopy, when focused properly.
A new processing to improve the quality of InAs surfaces was investigated with a technique called synchrotron based X-ray photoelectron spectroscopy (XPS). This method is based on the collection of the sample electrons ejected by the X-rays, acting as chemical fingerprint. By pushing this technique to its limits, the surface chemistry evolution during the deposition of a high quality oxide layer was studied in real time. The results showed the critical aspects in this industrially relevant processing. XPS was also used for studying the dopants on the surface of NWs, that were found to have a strong effect on the surface properties.
The doping incorporation in NWs is in general difficult to predict and measure. For the first time, an X-ray beam with a focal spot of only few tens of nanometers was used to map the dopant distribution in III-V NWs. The dopants were identified and counted thanks to their emission of characteristic X-rays, an effect called fluorescence. The results are useful to understand how to tailor the processing to have the desired dopant distribution for very efficient NW solar cells.
Finally, the strain effects caused by patterning arrays of NWs used for LEDs were studied with a technique called full field X-ray diffraction microscopy. This method is based on diffraction, a selective reflection of X-rays that occurs only in specific directions, depending on the atomic spacing: if there is strain, the atomic spacing (and the diffraction angle) is different. For the first time, images of InGaN NW arrays were obtained with the contrast given by their different strain. This study helps to find the optimal parameters for fabricating high quality NW LEDs.
This thesis explores a wide range of criticalities in specific III-V nanostructures. The use of modern X-ray based characterization tools is aimed to give concrete answers to improve these materials and devices, with the hope of making them more energetically efficient.
Originalspråk | engelska |
---|---|
Kvalifikation | Doktor |
Tilldelande institution |
|
Handledare |
|
Tilldelningsdatum | 2019 apr. 12 |
Utgivningsort | Lund |
Förlag | |
ISBN (tryckt) | 978-91-7753-978-0 |
ISBN (elektroniskt) | 978-91-7753-979-7 |
Status | Published - 2019 mars |
Bibliografisk information
Defence detailsDate: 2019-04-12
Time: 09:15
Place: Lundmarksalen, Astronomihuset, Sölvegatan 27, Lund
External reviewer(s)
Name: Kummel, Andrew
Title: Professor
Affiliation: University of California, San Diego, USA
---
Ämnesklassifikation (UKÄ)
- Den kondenserade materiens fysik