TY - JOUR
T1 - Synthesis of theoretical and empirical experineces from nutrient and cyprinid reductions in Lake Ringsjön
AU - Bergman, Eva
AU - Hansson, Lars-Anders
AU - Persson, Anders
AU - Strand, John
AU - Romare, Pia
AU - Enell, Magnus
AU - Granéli, Wilhelm
AU - Svensson, Jonas M.
AU - Cronberg, Gertrud
AU - Andersson, Gunnar
AU - Bergstrand, Eva
PY - 1999
Y1 - 1999
N2 - The reduction in external phosphorus load to Lake Ringsjön during the 1980s, did not result in improved water transparency during the following ten-year period. Furthermore, a fish-kill in the Eastern Basin of the lake, in addition to a cyprinid reduction programme (biomanipulation; 1988–1992), in contrast to theory, did not lead to any increase in zooplankton biomass or size. This absence of response in the pelagic food chain may have been attributed to the increase in abundance of YOY (0+) fish, following the fish reduction programme. Despite the lack of effect on zooplankton, there was a decrease in phytoplankton biomass, a change in species composition and an increase in water transparency following biomanipulation. In 1989, one year after the fish-kill in Eastern Basin, the Secchi depth (summer mean) increased from 60 cm to 110 cm. In the following years, water transparency increased further, despite an increase in phosphorus loading. An unexpected effect of the biomanipulation was an increase in benthic invertebrate and staging waterfowl abundances, which occurred 2–4 years after fish reduction. Hence, the response in the benthic community following biomanipulation was considerably stronger than in the pelagic community. A likely explanation is that reduction in abundance of the benthic feeding fish species bream (Abramis brama), strongly affected the benthic invertebrate fauna. In this paper, we present what we believe happened in Lake Ringsjön, and which processes are likely to have been important at various stages of the restoration process.
AB - The reduction in external phosphorus load to Lake Ringsjön during the 1980s, did not result in improved water transparency during the following ten-year period. Furthermore, a fish-kill in the Eastern Basin of the lake, in addition to a cyprinid reduction programme (biomanipulation; 1988–1992), in contrast to theory, did not lead to any increase in zooplankton biomass or size. This absence of response in the pelagic food chain may have been attributed to the increase in abundance of YOY (0+) fish, following the fish reduction programme. Despite the lack of effect on zooplankton, there was a decrease in phytoplankton biomass, a change in species composition and an increase in water transparency following biomanipulation. In 1989, one year after the fish-kill in Eastern Basin, the Secchi depth (summer mean) increased from 60 cm to 110 cm. In the following years, water transparency increased further, despite an increase in phosphorus loading. An unexpected effect of the biomanipulation was an increase in benthic invertebrate and staging waterfowl abundances, which occurred 2–4 years after fish reduction. Hence, the response in the benthic community following biomanipulation was considerably stronger than in the pelagic community. A likely explanation is that reduction in abundance of the benthic feeding fish species bream (Abramis brama), strongly affected the benthic invertebrate fauna. In this paper, we present what we believe happened in Lake Ringsjön, and which processes are likely to have been important at various stages of the restoration process.
KW - biomanipulation - nutrient reduction - zooplankton - phytoplankton - bottom-up - top-down - phosphorus - submerged vegetation - benthic macrofauna
U2 - 10.1023/A:1003788900521
DO - 10.1023/A:1003788900521
M3 - Article
SN - 0018-8158
VL - 404
SP - 145
EP - 156
JO - Hydrobiologia
JF - Hydrobiologia
ER -