Sammanfattning
A hybrid bifunctional core-shell nanostructure was synthesized for the first time via surface-initiated atom transfer radical polymerization (SI-ATRP) using myoglobin as a biocatalyst (ATRPase) in an aqueous solution. N-Isopropyl acrylamide (NIPA) and N-(3-aminopropyl)methacrylamide (APMA) were applied to graft flexible polymer brushes onto initiator-functionalized silica nanoparticles. Two different approaches were implemented to form the core-shell nanocomposite: (a) random copolymerization, Si@p(NIPA-co-APMA) and (b) sequential block copolymerization, Si@pNIPA-b-pAPMA. These nanocomposites can be used as versatile intermediates, thereby leading to different types of materials for targeted applications. In this work, a phenylboronic acid ligand was immobilized on the side chain of the grafted brushes during a series of postmodification reactions to create a boronate affinity adsorbent. The ability to selectively bind glycoproteins (ovalbumin and glycated hemoglobin) via boronic acid was assessed at two different temperatures (20 and 40 °C), where Si@pNIPA-b-APMABA (163 mg OVA/g of particle) displayed an approximately 1.5-fold higher capacity than Si@p(NIPA-co-APMA)BA (107 mg OVA/g of particle). In addition to selective binding to glycoproteins, the nanocomposites exhibited selective binding for myoglobin due to the molecular imprinting effect during the postmodification process, that is, 72 and 111 mg Mb/g for Si@p(NIPA-co-APMA)BA and Si@pNIPA-b-pAPMABA, respectively.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 10462-10474 |
Antal sidor | 13 |
Tidskrift | ACS Omega |
Volym | 6 |
Nummer | 15 |
DOI | |
Status | Published - 2021 apr. 20 |
Ämnesklassifikation (UKÄ)
- Polymerkemi