tau-tilting finite algebras, bricks, and g-vectors

Laurent Demonet, Osamu Iyama, Gustavo Jasso

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review


The class of support τ-tilting modules was introduced to provide a completion of the class of tilting modules from the point of view of mutations. In this article, we study τ-tilting finite algebras, that is, finite dimensional algebras A with finitely many isomorphism classes of indecomposable τ-rigid modules. We show that A is τ-tilting finite if and only if every torsion class in modA is functorially finite. Moreover we give a bijection between indecomposable τ-rigid A-modules and bricks of A satisfying a certain finiteness condition, which is automatic for τ-tilting finite algebras. We observe that cones generated by g-vectors of indecomposable direct summands of each support τ-tilting module form a simplicial complex Δ(A)⁠. We show that if A is τ-tilting finite, then Δ(A) is homeomorphic to an (n−1)-dimensional sphere, and moreover the partial order on support τ-tilting modules can be recovered from the geometry of Δ(A)⁠.
Sidor (från-till)852-892
Antal sidor41
TidskriftInternational Mathematics Research Notices
Tidigt onlinedatum2017 juli 9
StatusPublished - 2019 feb.
Externt publiceradJa

Ämnesklassifikation (UKÄ)

  • Algebra och logik

Citera det här