TY - JOUR
T1 - Taurine and N-acetylcysteine treatments prevent memory impairment and metabolite profile alterations in the hippocampus of high-fat diet-fed female mice
AU - Garcia-Serrano, Alba M
AU - Vieira, João
AU - Fleischhart, Veronika
AU - Duarte, Joao
PY - 2023
Y1 - 2023
N2 - Background: Obesity constitutes a risk factor for cognitive impairment. In rodent models, long-term exposure to obesogenic diets leads to hippocampal taurine accumulation. Since taurine has putative cyto-protective effects, hippocampal taurine accumulation in obese and diabetic models might constitute a counteracting response to metabolic stress. Objective: We tested the hypothesis that treatment with taurine or with N-acetylcysteine (NAC), which provides cysteine for the synthesis of taurine and glutathione, prevent high-fat diet (HFD)-associated hippocampal alterations and memory impairment. Methods: Female mice were fed either a regular diet or HFD. Some mice had access to 3%(w/v) taurine or 3%(w/v) NAC in the drinking water. After 2 months, magnetic resonance spectroscopy (MRS) was used to measure metabolite profiles. Memory was assessed in novel object and novel location recognition tests. Results: HFD feeding caused memory impairment in both tests, and reduced concentration of lactate, phosphocreatine-to-creatine ratio, and the neuronal marker N-acetylaspartate in the hippocampus. Taurine and NAC prevented HFD-induced memory impairment and N-acetylaspartate reduction. NAC, but not taurine, prevented the reduction of lactate and phosphocreatine-to-creatine ratio. MRS revealed NAC/taurine-induced increase of hippocampal glutamate and GABA levels. Conclusion: NAC and taurine can prevent memory impairment, while only NAC prevents alterations of metabolite concentrations in HFD-exposed female mice.
AB - Background: Obesity constitutes a risk factor for cognitive impairment. In rodent models, long-term exposure to obesogenic diets leads to hippocampal taurine accumulation. Since taurine has putative cyto-protective effects, hippocampal taurine accumulation in obese and diabetic models might constitute a counteracting response to metabolic stress. Objective: We tested the hypothesis that treatment with taurine or with N-acetylcysteine (NAC), which provides cysteine for the synthesis of taurine and glutathione, prevent high-fat diet (HFD)-associated hippocampal alterations and memory impairment. Methods: Female mice were fed either a regular diet or HFD. Some mice had access to 3%(w/v) taurine or 3%(w/v) NAC in the drinking water. After 2 months, magnetic resonance spectroscopy (MRS) was used to measure metabolite profiles. Memory was assessed in novel object and novel location recognition tests. Results: HFD feeding caused memory impairment in both tests, and reduced concentration of lactate, phosphocreatine-to-creatine ratio, and the neuronal marker N-acetylaspartate in the hippocampus. Taurine and NAC prevented HFD-induced memory impairment and N-acetylaspartate reduction. NAC, but not taurine, prevented the reduction of lactate and phosphocreatine-to-creatine ratio. MRS revealed NAC/taurine-induced increase of hippocampal glutamate and GABA levels. Conclusion: NAC and taurine can prevent memory impairment, while only NAC prevents alterations of metabolite concentrations in HFD-exposed female mice.
KW - Obesity
KW - diabetes
KW - MRS
KW - metabolism
KW - neurochemical profile
KW - lactate
KW - N-acetylaspartate (NAA)
KW - neuroprotection
U2 - 10.1080/1028415X.2022.2131062
DO - 10.1080/1028415X.2022.2131062
M3 - Article
C2 - 36222315
SN - 1476-8305
VL - 26
SP - 1090
EP - 1102
JO - Nutritional Neuroscience
JF - Nutritional Neuroscience
IS - 11
ER -