The canonical equation of adaptive dynamics for life histories: from fitness-returns to selection gradients and Pontryagin's maximum principle.

Johan A Jacob Metz, Kateřina Staňková, Jacob Johansson

    Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

    Sammanfattning

    This paper should be read as addendum to Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013). Our goal is, using little more than high-school calculus, to (1) exhibit the form of the canonical equation of adaptive dynamics for classical life history problems, where the examples in Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013) are chosen such that they avoid a number of the problems that one gets in this most relevant of applications, (2) derive the fitness gradient occurring in the CE from simple fitness return arguments, (3) show explicitly that setting said fitness gradient equal to zero results in the classical marginal value principle from evolutionary ecology, (4) show that the latter in turn is equivalent to Pontryagin's maximum principle, a well known equivalence that however in the literature is given either ex cathedra or is proven with more advanced tools, (5) connect the classical optimisation arguments of life history theory a little better to real biology (Mendelian populations with separate sexes subject to an environmental feedback loop), (6) make a minor improvement to the form of the CE for the examples in Dieckmann et al. and Parvinen et al.
    Originalspråkengelska
    Sidor (från-till)1125-1152
    TidskriftJournal of Mathematical Biology
    Volym74
    Nummer4
    Tidigt onlinedatum2015 nov. 19
    DOI
    StatusPublished - 2015

    Ämnesklassifikation (UKÄ)

    • Bioinformatik och systembiologi

    Fingeravtryck

    Utforska forskningsämnen för ”The canonical equation of adaptive dynamics for life histories: from fitness-returns to selection gradients and Pontryagin's maximum principle.”. Tillsammans bildar de ett unikt fingeravtryck.

    Citera det här