The Dirichlet problem for standard weighted Laplacians in the upper half plane

Marcus Carlsson, Jens Wittsten

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

4 Citeringar (SciVal)

Sammanfattning

In this paper the Dirichlet problem for a class of standard weighted Laplace operators in the upper half plane is solved by means of a counterpart of the classical Poisson integral formula. Boundary limits and representations of the associated solutions are studied within a framework of weighted spaces of distributions. Special attention is given to the development of a, suitable uniqueness theory for the Dirichlet problem under appropriate growth constraints at infinity. (C) 2015 Elsevier Inc. All rights reserved.
Originalspråkengelska
Sidor (från-till)868-889
TidskriftJournal of Mathematical Analysis and Applications
Volym436
Utgåva2
DOI
StatusPublished - 2016

Ämnesklassifikation (UKÄ)

  • Matematisk analys

Fingeravtryck

Utforska forskningsämnen för ”The Dirichlet problem for standard weighted Laplacians in the upper half plane”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här