TY - JOUR
T1 - The Effects of Chain Length on the Structural Properties of Intrinsically Disordered Proteins in Concentrated Solutions
AU - Fagerberg, Eric
AU - Mansson, Linda K.
AU - Lenton, Samuel
AU - Skepo, Marie
PY - 2021
Y1 - 2021
N2 - Intrinsically disordered proteins (IDP) are proteins that sample a heterogeneous ensemble of conformers in solution. An estimated 25-30% of all eukaryotic proteins belong to this class. In vivo, IDPs function under conditions that are highly crowded by other biological macromolecules. Previous research has highlighted that the presence of crowding agents can influence the conformational ensemble sampled by IDPs, resulting in either compaction or expansion. The effects of self-crowding of the disordered protein Histatin 5 has, in an earlier study, been found to have limited influence on the conformational ensemble. In this study, it is examined whether the short chain length of Histatin 5 can explain the limited effects of crowding observed, by introducing (Histatin 5)2, a tandem repeat of Histatin 5. By utilizing small-angle X-ray scattering, it is shown that the conformational ensemble is conserved at high protein concentrations, in resemblance with Histatin 5, although with a lowered protein concentration at which aggregation arises. Under dilute conditions, atomistic molecular dynamics and coarse-grained Monte Carlo simulations, as well as an established scaling law, predicted more extended conformations than indicated by experimental data, hence implying that (Histatin 5)2 does not behave as a self-avoiding random walk.
AB - Intrinsically disordered proteins (IDP) are proteins that sample a heterogeneous ensemble of conformers in solution. An estimated 25-30% of all eukaryotic proteins belong to this class. In vivo, IDPs function under conditions that are highly crowded by other biological macromolecules. Previous research has highlighted that the presence of crowding agents can influence the conformational ensemble sampled by IDPs, resulting in either compaction or expansion. The effects of self-crowding of the disordered protein Histatin 5 has, in an earlier study, been found to have limited influence on the conformational ensemble. In this study, it is examined whether the short chain length of Histatin 5 can explain the limited effects of crowding observed, by introducing (Histatin 5)2, a tandem repeat of Histatin 5. By utilizing small-angle X-ray scattering, it is shown that the conformational ensemble is conserved at high protein concentrations, in resemblance with Histatin 5, although with a lowered protein concentration at which aggregation arises. Under dilute conditions, atomistic molecular dynamics and coarse-grained Monte Carlo simulations, as well as an established scaling law, predicted more extended conformations than indicated by experimental data, hence implying that (Histatin 5)2 does not behave as a self-avoiding random walk.
U2 - 10.1021/acs.jpcb.0c09635
DO - 10.1021/acs.jpcb.0c09635
M3 - Article
C2 - 33337879
AN - SCOPUS:85098777152
SN - 1520-6106
VL - 124
SP - 11843
EP - 11853
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 52
ER -