The extended affine Lie algebra associated with a connected non-negative unit form

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Given a connected non-negative unit form we construct an extended affine Lie algebra by giving a Chevalley basis for it. We also obtain this algebra as a quotient of an algebra defined by means of generalized Serre relations by M. Barot, D. Kussin and H. Lenzing. This is done in an analogous way to the construction of the simply-laced affine Kac–Moody algebras. Thus, we obtain a family of extended affine Lie algebras of simply-laced Dynkin type and arbitrary nullity. Furthermore, there is a one-to-one correspondence between these Lie algebras and the equivalence classes of connected non-negative unit forms.
Originalspråkengelska
Sidor (från-till)148-161
Antal sidor14
TidskriftJournal of Algebra
Volym409
DOI
StatusPublished - 2014 juli
Externt publiceradJa

Ämnesklassifikation (UKÄ)

  • Algebra och logik

Fingeravtryck

Utforska forskningsämnen för ”The extended affine Lie algebra associated with a connected non-negative unit form”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här