TY - JOUR
T1 - The Long-Term Mortality Effects Associated with Exposure to Particles and NOx in the Malmö Diet and Cancer Cohort
AU - Olstrup, Henrik
AU - Flanagan, Erin
AU - Persson, Jan Olov
AU - Rittner, Ralf
AU - Krage Carlsen, Hanne
AU - Stockfelt, Leo
AU - Xu, Yiyi
AU - Rylander, Lars
AU - Gustafsson, Susanna
AU - Spanne, Mårten
AU - Åström, Daniel Oudin
AU - Engström, Gunnar
AU - Oudin, Anna
N1 - Funding Information:
This research was funded by Formas under grant agreement number 2017-00898 (How is our health affected by particles from wood burning? A. Oudin), by the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 814978 (TUBE), and by the Swedish Research Council for Sustainable Development (FORMAS, number 2016–00993; Stockfelt). Open access funding was provided by Lund University.
Publisher Copyright:
© 2023 by the authors.
PY - 2023/11
Y1 - 2023/11
N2 - In this study, the long-term mortality effects associated with exposure to PM10 (particles with an aerodynamic diameter smaller than or equal to 10 µm), PM2.5 (particles with an aerodynamic diameter smaller than or equal to 2.5 µm), BC (black carbon), and NOx (nitrogen oxides) were analyzed in a cohort in southern Sweden during the period from 1991 to 2016. Participants (those residing in Malmö, Sweden, born between 1923 and 1950) were randomly recruited from 1991 to 1996. At enrollment, 30,438 participants underwent a health screening, which consisted of questionnaires about lifestyle and diet, a clinical examination, and blood sampling. Mortality data were retrieved from the Swedish National Cause of Death Register. The modeled concentrations of PM10, PM2.5, BC, and NOx at the cohort participants’ home addresses were used to assess air pollution exposure. Cox proportional hazard models were used to estimate the associations between long-term exposure to PM10, PM2.5, BC, and NOx and the time until death among the participants during the period from 1991 to 2016. The hazard ratios (HRs) associated with an interquartile range (IQR) increase in each air pollutant were calculated based on the exposure lag windows of the same year (lag0), 1–5 years (lag1–5), and 6–10 years (lag6–10). Three models were used with varying adjustments for possible confounders including both single-pollutant estimates and two-pollutant estimates. With adjustments for all covariates, the HRs for PM10, PM2.5, BC, and NOx in the single-pollutant models at lag1–5 were 1.06 (95% CI: 1.02–1.11), 1.01 (95% CI: 0.95–1.08), 1.07 (95% CI: 1.04–1.11), and 1.11 (95% CI: 1.07–1.16) per IQR increase, respectively. The HRs, in most cases, decreased with the inclusion of a larger number of covariates in the models. The most robust associations were shown for NOx, with statistically significant positive HRs in all the models. An overall conclusion is that road traffic-related pollutants had a significant association with mortality in the cohort.
AB - In this study, the long-term mortality effects associated with exposure to PM10 (particles with an aerodynamic diameter smaller than or equal to 10 µm), PM2.5 (particles with an aerodynamic diameter smaller than or equal to 2.5 µm), BC (black carbon), and NOx (nitrogen oxides) were analyzed in a cohort in southern Sweden during the period from 1991 to 2016. Participants (those residing in Malmö, Sweden, born between 1923 and 1950) were randomly recruited from 1991 to 1996. At enrollment, 30,438 participants underwent a health screening, which consisted of questionnaires about lifestyle and diet, a clinical examination, and blood sampling. Mortality data were retrieved from the Swedish National Cause of Death Register. The modeled concentrations of PM10, PM2.5, BC, and NOx at the cohort participants’ home addresses were used to assess air pollution exposure. Cox proportional hazard models were used to estimate the associations between long-term exposure to PM10, PM2.5, BC, and NOx and the time until death among the participants during the period from 1991 to 2016. The hazard ratios (HRs) associated with an interquartile range (IQR) increase in each air pollutant were calculated based on the exposure lag windows of the same year (lag0), 1–5 years (lag1–5), and 6–10 years (lag6–10). Three models were used with varying adjustments for possible confounders including both single-pollutant estimates and two-pollutant estimates. With adjustments for all covariates, the HRs for PM10, PM2.5, BC, and NOx in the single-pollutant models at lag1–5 were 1.06 (95% CI: 1.02–1.11), 1.01 (95% CI: 0.95–1.08), 1.07 (95% CI: 1.04–1.11), and 1.11 (95% CI: 1.07–1.16) per IQR increase, respectively. The HRs, in most cases, decreased with the inclusion of a larger number of covariates in the models. The most robust associations were shown for NOx, with statistically significant positive HRs in all the models. An overall conclusion is that road traffic-related pollutants had a significant association with mortality in the cohort.
KW - air pollution
KW - Cox regression
KW - hazard ratio
KW - long-term exposure
KW - nitrogen oxides
KW - particles
KW - proportional hazard
U2 - 10.3390/toxics11110913
DO - 10.3390/toxics11110913
M3 - Article
C2 - 37999565
AN - SCOPUS:85178269924
SN - 2305-6304
VL - 11
JO - Toxics
JF - Toxics
IS - 11
M1 - 913
ER -