The magnetic Laplacian on the disc for strong magnetic fields

Ayman Kachmar, Germán Miranda

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The magnetic Laplacian on a planar domain under a strong constant magnetic field has eigenvalues close to the Landau levels. We study the case when the domain is a disc and the spectrum consists of branches of eigenvalues of one dimensional operators. Under Neumann boundary condition and strong magnetic field, we derive asymptotics of the eigenvalues with accurate estimates of exponentially small remainders. Our approach is purely variational and applies to the Dirichlet boundary condition as well, which allows us to recover recent results by Baur and Weidl.

Originalspråkengelska
Artikelnummer129261
TidskriftJournal of Mathematical Analysis and Applications
Volym546
Nummer2
DOI
StatusPublished - 2025 juni

Ämnesklassifikation (UKÄ)

  • Matematisk analys

Fingeravtryck

Utforska forskningsämnen för ”The magnetic Laplacian on the disc for strong magnetic fields”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här