Sammanfattning

In this paper we study structure from motion problems for parallel cylinders. Using sparse keypoint correspondences is an efficient (and standard) way to solve the structure from motion problem. However, point features are sometimes unavailable and they can be unstable over time and viewing conditions. Instead, we propose a framework based on silhouettes of quadric surfaces, with special emphasis on parallel cylinders. Such structures are quite common, e.g. trees, lampposts, pillars, and furniture legs. Traditionally, the projection of the center lines of such cylinders have been considered and used in computer vision. Here, we demonstrate that the apparent width of the cylinders also contains useful information for structure and motion estimation. We provide mathematical analysis of relative structure and relative motion tensors, which is used to develop a number of minimal solvers for simultaneously estimating camera pose and scene structure from silhouette lines of cylinders. These solvers can be used efficiently in robust estimation schemes, such as RANSAC. We use Sampson-approximation methods for efficient estimation using over-determined data and develop averaging techniques. We also perform synthetic accuracy and robustness tests and evaluate our methods on a number of real-world scenarios.
Originalspråkengelska
Titel på värdpublikationImage Analysis
Undertitel på värdpublikation23rd Scandinavian Conference, SCIA 2023, Sirkka, Finland, April 18–21, 2023, Proceedings
RedaktörerRikke Gade, Michael Felsberg, Joni-Kristian Kämäräinen
FörlagSpringer
Sidor482-499
ISBN (elektroniskt)978-3-031-31438-4
ISBN (tryckt)978-3-031-31437-7
DOI
StatusPublished - 2023
Evenemang22nd Scandinavian Conference on Image Analysis, SCIA 2023 - Sirkka, Finland
Varaktighet: 2023 apr. 182023 apr. 21

Publikationsserier

NamnLecture Notes in Computer Science
FörlagSpringer
Volym13886
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Konferens

Konferens22nd Scandinavian Conference on Image Analysis, SCIA 2023
Land/TerritoriumFinland
OrtSirkka
Period2023/04/182023/04/21

Ämnesklassifikation (UKÄ)

  • Datorseende och robotik (autonoma system)

Fingeravtryck

Utforska forskningsämnen för ”The Multi-view Geometry of Parallel Cylinders”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här