The Performance-Determining Role of Lewis Bases in Dye-Sensitized Solar Cells Employing Copper-Bisphenanthroline Redox Mediators

Sebastian O. Fürer, Rebecca A. Milhuisen, Muhammad K. Kashif, Sonia R. Raga, Shravan S. Acharya, Craig Forsyth, Maning Liu, Laszlo Frazer, Noel W. Duffy, C. André Ohlin, Alison M. Funston, Yasuhiro Tachibana, Udo Bach

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Copper redox mediators have enabled open-circuit voltages (VOC) of over 1.0 V in dye-sensitized solar cells (DSCs) and have helped to establish DSCs as the most promising solar cell technology in low-light conditions. The addition of additives such as 4-tert-butylpyridine (tBP) to these electrolytes has helped in achieving high solar cell performances. However, emerging evidence suggests that tBP coordinates to the Cu(II) species and limits the performance of these electrolytes. To date, the implications of this coordination are poorly understood. Here, the importance of Lewis base additives for the successful implementation of copper complexes as redox mediators in DSCs is demonstrated. Two redox couples, [Cu(dmp)2]+/2+ and [Cu(dpp)2]+/2+ (with dmp = 2,9-dimethyl-1,10-phenanthroline and dpp = 2,9-diphenyl-1,10-phenanthroline) in combination with three different Lewis bases, TFMP (4-(trifluoromethyl)pyridine), tBP, and NMBI (1-methyl-benzimidazole), are considered. Through single-crystal X-ray diffraction analysis, absorption, and 1H-NMR spectroscopies, the coordination of Lewis bases to the Cu(II) centers are studied. This coordination efficiently suppresses recombination losses and is crucial for high performing solar cells. If, however, the coordination involves a ligand exchange, as is the case for [Cu(dpp)2]+/2+, the redox mediator regeneration at the counter electrode is significantly retarded and the solar cells show current limitations.

Originalspråkengelska
Artikelnummer2002067
TidskriftAdvanced Energy Materials
Volym10
Nummer37
DOI
StatusPublished - 2020 okt. 1
Externt publiceradJa

Ämnesklassifikation (UKÄ)

  • Materialkemi

Fingeravtryck

Utforska forskningsämnen för ”The Performance-Determining Role of Lewis Bases in Dye-Sensitized Solar Cells Employing Copper-Bisphenanthroline Redox Mediators”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här