The power of negative reasoning

Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, Dmitry Sokolov

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Semialgebraic proof systems have been studied extensively in proof complexity since the late 1990s to understand the power of Gröbner basis computations, linear and semidefinite programming hierarchies, and other methods. Such proof systems are defined alternately with only the original variables of the problem and with special formal variables for positive and negative literals, but there seems to have been no study how these different definitions affect the power of the proof systems. We show for Nullstellensatz, polynomial calculus, Sherali-Adams, and sums-of-squares that adding formal variables for negative literals makes the proof systems exponentially stronger, with respect to the number of terms in the proofs. These separations are witnessed by CNF formulas that are easy for resolution, which establishes that polynomial calculus, Sherali-Adams, and sums-of-squares cannot efficiently simulate resolution without having access to variables for negative literals.

Originalspråkengelska
Titel på värdpublikation36th Computational Complexity Conference, CCC 2021
RedaktörerValentine Kabanets
FörlagSchloss Dagstuhl - Leibniz-Zentrum für Informatik
ISBN (elektroniskt)9783959771931
DOI
StatusPublished - 2021 juli 1
Evenemang36th Computational Complexity Conference, CCC 2021 - Virtual, Toronto, Kanada
Varaktighet: 2021 juli 202021 juli 23

Publikationsserier

NamnLeibniz International Proceedings in Informatics, LIPIcs
Volym200
ISSN (tryckt)1868-8969

Konferens

Konferens36th Computational Complexity Conference, CCC 2021
Land/TerritoriumKanada
OrtVirtual, Toronto
Period2021/07/202021/07/23

Ämnesklassifikation (UKÄ)

  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”The power of negative reasoning”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här