The probability density function tail of the Kardar-Parisi-Zhang equation in the strongly non-linear regime

Johan Anderson, Jonas Johansson

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

An analytical derivation of the probability density function (PDF) tail describing the strongly correlated interface growth governed by the nonlinear Kardar-Parisi-Zhang equation is provided. The PDF tail exactly coincides with a Tracy-Widom distribution i.e. a PDF tail proportional to exp (cw2 3/2), Where w 2 is the the width of the interface. The PDF tail is computed by the instanton method in the strongly non-linear regime within the Martin-Siggia-Rose framework using a careful treatment of the non-linear interactions. In addition, the effect of spatial dimensions on the PDF tail scaling is discussed. This gives a novel approach to understand the rightmost PDF tail of the interface width distribution and the analysis suggests that there is no upper critical dimension.

Originalspråkengelska
Artikelnummer505001
TidskriftJournal of Physics A: Mathematical and Theoretical
Volym49
Nummer50
DOI
StatusPublished - 2016 nov. 23

Ämnesklassifikation (UKÄ)

  • Den kondenserade materiens fysik
  • Annan fysik

Fingeravtryck

Utforska forskningsämnen för ”The probability density function tail of the Kardar-Parisi-Zhang equation in the strongly non-linear regime”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här