The role of different thesauri terms and captions in automated subject classification

Koraljka Golub

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

The paper aims to explore to what degree different types of terms in engineering information (Ei) thesaurus and classification scheme influence automated subject classification performance. Preferred terms, their synonyms, broader, narrower, related terms, and captions are examined in combination with a stemmer and a stop-word list. The algorithm comprises string-to-string matching between words in the documents to be classified and words in term lists derived from the Ei thesaurus and classification scheme. The data collection for evaluation consists of some 35000 scientific paper abstracts from the compendex database. A subset of the Ei thesaurus and classification scheme is used, comprising 92 classes at up to five hierarchical levels from general engineering. The results show that preferred terms perform best, whereas captions perform worst. Stemming in most cases shows performance improvement, whereas the stop-word list does not have a significant impact
Originalspråkengelska
Titel på värdpublikationProceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor961-965
Antal sidor5
ISBN (tryckt)0-7695-2747-7
DOI
StatusPublished - 2006
Evenemang2006 IEEE/WIC/ACM International Conference on Web Intelligence - Hong Kong, Kina
Varaktighet: 2006 dec. 182006 dec. 22

Konferens

Konferens2006 IEEE/WIC/ACM International Conference on Web Intelligence
Land/TerritoriumKina
OrtHong Kong
Period2006/12/182006/12/22

Ämnesklassifikation (UKÄ)

  • Elektroteknik och elektronik

Fingeravtryck

Utforska forskningsämnen för ”The role of different thesauri terms and captions in automated subject classification”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här