TY - JOUR
T1 - The role of super-spreaders in modeling of SARS-CoV-2
AU - Rousse, François
AU - Carlsson, Marcus
AU - Ögren, Magnus
AU - Wellander, Benjamin Kalischer
PY - 2022/12
Y1 - 2022/12
N2 - In stochastic modeling of infectious diseases, it has been established that variations in infectivity affect the probability of a major outbreak, but not the shape of the curves during a major outbreak, which is predicted by deterministic models (Diekmann et al., 2012). However, such conclusions are derived under idealized assumptions such as the population size tending to infinity, and the individual degree of infectivity only depending on variations in the infectiousness period. In this paper we show that the same conclusions hold true in a finite population representing a medium size city, where the degree of infectivity is determined by the offspring distribution, which we try to make as realistic as possible for SARS-CoV-2. In particular, we consider distributions with fat tails, to incorporate the existence of super-spreaders. We also provide new theoretical results on convergence of stochastic models which allows to incorporate any offspring distribution with a finite variance.
AB - In stochastic modeling of infectious diseases, it has been established that variations in infectivity affect the probability of a major outbreak, but not the shape of the curves during a major outbreak, which is predicted by deterministic models (Diekmann et al., 2012). However, such conclusions are derived under idealized assumptions such as the population size tending to infinity, and the individual degree of infectivity only depending on variations in the infectiousness period. In this paper we show that the same conclusions hold true in a finite population representing a medium size city, where the degree of infectivity is determined by the offspring distribution, which we try to make as realistic as possible for SARS-CoV-2. In particular, we consider distributions with fat tails, to incorporate the existence of super-spreaders. We also provide new theoretical results on convergence of stochastic models which allows to incorporate any offspring distribution with a finite variance.
KW - Compartmental models
KW - COVID-19
KW - Offspring distribution for SARS-CoV-2
KW - SEIR
KW - SIR
U2 - 10.1016/j.idm.2022.10.003
DO - 10.1016/j.idm.2022.10.003
M3 - Article
C2 - 36267691
AN - SCOPUS:85142435236
VL - 7
SP - 778
EP - 794
JO - Infectious Disease Modelling
JF - Infectious Disease Modelling
SN - 2468-0427
IS - 4
ER -