Theoretical characterization of the lowest-energy absorption band of pyrrole

Björn Roos, Per-Åke Malmqvist, Vicent Molina, L Serrano-Andres, M Merchan

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The lowest-energy band of the electronic spectrum of pyrrole has been studied with vibrational resolution by using multiconfigurational second-order perturbation theory (CASPT2) and its multistate extension (MS-CASPT2) in conjunction with large atomic natural orbital-type basis sets including Rydberg functions. The obtained results provide a consistent picture of the recorded spectrum in the energy region 5.5-6.5 eV and confirm that the bulk of the intensity of the band arises from a pipi(*) intravalence transition, in contradiction to recent theoretical claims. Computed band origins for the 3s,3p Rydberg electronic transitions are in agreement with the available experimental data, although new assignments are suggested. As illustrated in the paper, the proper treatment of the valence-Rydberg mixing is particularly challenging for ab initio methodologies and can be seen as the main source of deviation among the recent theoretical results as regards the position of the low-lying valence excited states of pyrrole. (C) 2002 American Institute of Physics.
Originalspråkengelska
Sidor (från-till)7526-7536
TidskriftJournal of Chemical Physics
Volym116
Nummer17
DOI
StatusPublished - 2002

Bibliografisk information

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Theoretical Chemistry (S) (011001039)

Ämnesklassifikation (UKÄ)

  • Teoretisk kemi

Fingeravtryck

Utforska forskningsämnen för ”Theoretical characterization of the lowest-energy absorption band of pyrrole”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här