TY - JOUR
T1 - Thermophysical properties and convection heat transfer behavior of ionic liquid [C4mim][NTf2] at medium temperature in helically corrugated tubes
AU - Wang, Wei
AU - Wu, Zan
AU - Zhang, Yaning
AU - Li, Bingxi
AU - Sundén, Bengt
PY - 2018/9/1
Y1 - 2018/9/1
N2 - The thermophysical properties of the ionic liquid, 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide, [C4mim][NTf2], at medium temperature, were predicted based on a summary of previous literature data. Furthermore, the heat transfer behavior in smooth and corrugated tubes was numerically studied, using different fluid temperatures and corrugation heights. A multi-objective optimization method was used to obtain the optimal solutions from a set of feasible solutions. The result show that the empirical formulas can well predict the density, heat capacity, and thermal conductivity conditions, yet show small errors on different viscosity conditions. The heat transfer performance for high-temperature fluids is quite superior to that in the low temperature condition, as well as on pressure drop. The growth rate of the heat transfer performance is significant for the cases of corrugation height to diameter ratio equal to 0.025 and 0.05. In addition, the overall heat transfer performance presents an interval optimum principle, where the Reynolds number is inversely proportional to the corrugation height, except for the case of corrugation height to diameter ratio equal to 0.15. The response values of the Pareto optimal solution correspond to Nusselt number = 724.6, Poiseuille number = 1519.8 and Overall heat transfer performance = 1.01, with the Reynolds number = 70,490 and ratio of corrugation height to diameter = 0.0252.
AB - The thermophysical properties of the ionic liquid, 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide, [C4mim][NTf2], at medium temperature, were predicted based on a summary of previous literature data. Furthermore, the heat transfer behavior in smooth and corrugated tubes was numerically studied, using different fluid temperatures and corrugation heights. A multi-objective optimization method was used to obtain the optimal solutions from a set of feasible solutions. The result show that the empirical formulas can well predict the density, heat capacity, and thermal conductivity conditions, yet show small errors on different viscosity conditions. The heat transfer performance for high-temperature fluids is quite superior to that in the low temperature condition, as well as on pressure drop. The growth rate of the heat transfer performance is significant for the cases of corrugation height to diameter ratio equal to 0.025 and 0.05. In addition, the overall heat transfer performance presents an interval optimum principle, where the Reynolds number is inversely proportional to the corrugation height, except for the case of corrugation height to diameter ratio equal to 0.15. The response values of the Pareto optimal solution correspond to Nusselt number = 724.6, Poiseuille number = 1519.8 and Overall heat transfer performance = 1.01, with the Reynolds number = 70,490 and ratio of corrugation height to diameter = 0.0252.
KW - Convection heat transfer
KW - Helically corrugated tube
KW - Ionic liquid
KW - Medium temperature
KW - Multi-objective optimization
KW - Thermophysical properties
U2 - 10.1016/j.applthermaleng.2018.07.035
DO - 10.1016/j.applthermaleng.2018.07.035
M3 - Article
AN - SCOPUS:85049796652
VL - 142
SP - 457
EP - 465
JO - Applied Thermal Engineering
JF - Applied Thermal Engineering
SN - 1359-4311
ER -