Sammanfattning
We study the time-resolved fluorescence spectrum in two-level systems interacting with an incident coherent field, both in the weak and intermediate coupling regimes. For a single two-level system in the intermediate-coupling case, as time flows, the spectrum develops distinct features that are not captured by a semiclassical treatment of the incident field. Specifically, for a field on resonance with the atomic transition energy, the usual Mollow spectrum is replaced by a four-peak structure, and for a frequency that is half of the atomic transition energy, the time-dependent spectrum develops a second-harmonic peak with a superimposed Mollow triplet. In the long-time limit, our description recovers results previously found in the literature. After analyzing why a different behavior is observed in the quantum and classical dynamics, the reason for the occurrence of a second-harmonic signal in a two-level system is explained via a symmetry analysis of the total (electron and photon) system and in terms of a three-level system operating in limiting regimes. We find an increased second-harmonic signal in an array of two-level systems, suggesting a superradiance-like enhancement for multiple two-level systems in cavity setups. Finally, initial explorative results are presented for two-level model atoms entering and exiting a cavity, which hint at an interesting interplay between cavity-photon screening and atomic dynamics effects.
Originalspråk | engelska |
---|---|
Artikelnummer | 013719 |
Tidskrift | Physical Review A |
Volym | 102 |
Nummer | 1 |
DOI | |
Status | Published - 2020 |
Ämnesklassifikation (UKÄ)
- Atom- och molekylfysik och optik
- Den kondenserade materiens fysik