Towards Explaining Satellite Based Poverty Predictions with Convolutional Neural Networks

Hamid Sarmadi, Thorsteinn Rognvaldsson, Nils Roger Carlsson, Mattias Ohlsson, Ibrahim Wahab, Ola Hall

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Deep convolutional neural networks (CNNs) have been shown to predict poverty and development indicators from satellite images with surprising accuracy. This paper presents a first attempt at analyzing the CNNs responses in detail and explaining the basis for the predictions. The CNN model, while trained on relatively low resolution day- and night-time satellite images, is able to outperform human subjects who look at high-resolution images in ranking the Wealth Index categories. Multiple explainability experiments performed on the model indicate the importance of the sizes of the objects, pixel colors in the image, and provide a visualization of the importance of different structures in input images. A visualization is also provided of type images that maximize the network prediction of Wealth Index, which provides clues on what the CNN prediction is based on.

Originalspråkengelska
Titel på värdpublikation2023 IEEE 10th International Conference on Data Science and Advanced Analytics, DSAA 2023 - Proceedings
RedaktörerYannis Manolopoulos, Zhi-Hua Zhou
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
ISBN (elektroniskt)9798350345032
DOI
StatusPublished - 2023
Evenemang10th IEEE International Conference on Data Science and Advanced Analytics, DSAA 2023 - Thessaloniki, Grekland
Varaktighet: 2023 okt. 92023 okt. 12

Publikationsserier

Namn2023 IEEE 10th International Conference on Data Science and Advanced Analytics, DSAA 2023 - Proceedings

Konferens

Konferens10th IEEE International Conference on Data Science and Advanced Analytics, DSAA 2023
Land/TerritoriumGrekland
OrtThessaloniki
Period2023/10/092023/10/12

Bibliografisk information

Publisher Copyright:
© 2023 IEEE.

Ämnesklassifikation (UKÄ)

  • Annan samhällsvetenskap

Fingeravtryck

Utforska forskningsämnen för ”Towards Explaining Satellite Based Poverty Predictions with Convolutional Neural Networks”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här