Tracking of dynamic functional connectivity from MEG data with Kalman filtering

Filip Tronarp, Lauri Parkkonen, Simo Särkkä, Narayan P Subramaniyam

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Owing to their millisecond-scale temporal resolution, magnetoencephalography (MEG) and electroencephalography (EEG) are well-suited tools to study dynamic functional connectivity between regions in the human brain. However, current techniques to estimate functional connectivity from MEG/EEG are based on a two-step approach; first, the MEG/EEG inverse problem is solved to estimate the source activity, and second, connectivity is estimated between the sources. In this work, we propose a method for simultaneous estimation of source activities and their dynamic functional connectivity using a Kalman filter. Based on simulations, our approach can reliably estimate source activities and resolve their time-varying interactions even at low SNR (
Originalspråkengelska
Titel på värdpublikation40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
ISBN (elektroniskt)978-1-5386-3646-6, 978-1-5386-3645-9
ISBN (tryckt)978-1-5386-3647-3
DOI
StatusPublished - 2018
Externt publiceradJa
Evenemang40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) - Honolulu, USA
Varaktighet: 2018 juli 182018 juli 21

Konferens

Konferens40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Land/TerritoriumUSA
OrtHonolulu
Period2018/07/182018/07/21

Ämnesklassifikation (UKÄ)

  • Datorgrafik och datorseende

Fingeravtryck

Utforska forskningsämnen för ”Tracking of dynamic functional connectivity from MEG data with Kalman filtering”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här