Trade-offs between size and degree in polynomial calculus

Guillaume Lagarde, Jakob Nordström, Dmitry Sokolov, Joseph Swernofsky

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Building on [Clegg et al.’96], [Impagliazzo et al.’99] established that if an unsatisfiable k-CNF formula over n variables has a refutation of size S in the polynomial calculus resolution proof system, then this formula also has a refutation of degree k + O(n log S). The proof of this works by converting a small-size refutation into a small-degree one, but at the expense of increasing the proof size exponentially. This raises the question of whether it is possible to achieve both small size and small degree in the same refutation, or whether the exponential blow-up is inherent. Using and extending ideas from [Thapen’16], who studied the analogous question for the resolution proof system, we prove that a strong size-degree trade-off is necessary.

Originalspråkengelska
Titel på värdpublikation11th Innovations in Theoretical Computer Science Conference, ITCS 2020
RedaktörerThomas Vidick
FörlagSchloss Dagstuhl - Leibniz-Zentrum für Informatik
ISBN (elektroniskt)9783959771344
DOI
StatusPublished - 2020 jan.
Evenemang11th Innovations in Theoretical Computer Science Conference, ITCS 2020 - Seattle, USA
Varaktighet: 2020 jan. 122020 jan. 14

Publikationsserier

NamnLeibniz International Proceedings in Informatics, LIPIcs
Förlag Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Volym151
ISSN (tryckt)1868-8969

Konferens

Konferens11th Innovations in Theoretical Computer Science Conference, ITCS 2020
Land/TerritoriumUSA
OrtSeattle
Period2020/01/122020/01/14

Ämnesklassifikation (UKÄ)

  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Trade-offs between size and degree in polynomial calculus”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här