Trust No One: Low Rank Matrix Factorization Using Hierarchical RANSAC

Magnus Oskarsson, Kenneth Batstone, Kalle Åström

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

In this paper we present a system for performing low rank matrix factorization. Low-rank matrix factorization is an essential problem in many areas including computer vision, with applications in e.g. affine structure-from-motion, photometric stereo, and non-rigid structure from motion. We specifically target structured data patterns, with outliers and large amounts of missing data. Using recently developed characterizations of minimal solutions to matrix factorization problems with missing data, we show how these can be used as building blocks in a hierarchical system that performs bootstrapping on all levels. This gives an robust and fast system, with state-of-the-art performance.
Originalspråkengelska
Titel på värdpublikation2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), proceedings of
FörlagComputer Vision Foundation
Sidor5820-5829
Antal sidor10
StatusPublished - 2016 juni 1
Evenemang2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - Washington Convention Centre, Seattle, USA
Varaktighet: 2016 juni 272016 juni 30

Konferens

Konferens2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Förkortad titelCVPR 2016
Land/TerritoriumUSA
OrtSeattle
Period2016/06/272016/06/30

Ämnesklassifikation (UKÄ)

  • Matematik
  • Datorseende och robotik (autonoma system)

Fingeravtryck

Utforska forskningsämnen för ”Trust No One: Low Rank Matrix Factorization Using Hierarchical RANSAC”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här