Trust Your IMU: Consequences of Ignoring the IMU Drift

Marcus Valtonen Ornhag, Patrik Persson, Marten Wadenback, Kalle Astrom, Anders Heyden

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

In this paper, we argue that modern pre-integration methods for inertial measurement units (IMUs) are accurate enough to ignore the drift for short time intervals. This allows us to consider a simplified camera model, which in turn admits further intrinsic calibration. We develop the first-ever solver to jointly solve the relative pose problem with unknown and equal focal length and radial distortion profile while utilizing the IMU data. Furthermore, we show significant speed-up compared to state-of-the-art algorithms, with small or negligible loss in accuracy for partially calibrated setups.The proposed algorithms are tested on both synthetic and real data, where the latter is focused on navigation using unmanned aerial vehicles (UAVs). We evaluate the proposed solvers on different commercially available low-cost UAVs, and demonstrate that the novel assumption on IMU drift is feasible in real-life applications. The extended intrinsic auto-calibration enables us to use distorted input images, making tedious calibration processes obsolete, compared to current state-of-the-art methods. Code available at: https://github.com/marcusvaltonen/DronePoseLib.1

Originalspråkengelska
Titel på värdpublikationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
FörlagIEEE Computer Society
Sidor4467-4476
Antal sidor10
ISBN (elektroniskt)9781665487399
DOI
StatusPublished - 2022
Evenemang2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 - New Orleans, USA
Varaktighet: 2022 juni 192022 juni 20

Publikationsserier

NamnIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volym2022-June
ISSN (tryckt)2160-7508
ISSN (elektroniskt)2160-7516

Konferens

Konferens2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
Land/TerritoriumUSA
OrtNew Orleans
Period2022/06/192022/06/20

Ämnesklassifikation (UKÄ)

  • Datorseende och robotik (autonoma system)

Fingeravtryck

Utforska forskningsämnen för ”Trust Your IMU: Consequences of Ignoring the IMU Drift”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här