Two more counterexamples to the infinite dimensional carleson embedding theorem

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The existence of a counterexample to the infinite-dimensional Carleson embedding theorem has been established by Nazarov, Pisier, Treil, and Volberg. We provide an explicit construction of such an example. We also obtain a non-constructive example of particularly simple form; the density function of the measure (with respect to a certain weighted area measure) is the tensor-square of a Hilbert space-valued analytic function. This special structure of the measure has implications for Hankel-like operators appearing in control theory.

Originalspråkengelska
Sidor (från-till)7655-7680
Antal sidor26
TidskriftInternational Mathematics Research Notices
Volym2018
Utgåva24
DOI
StatusPublished - 2018

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Two more counterexamples to the infinite dimensional carleson embedding theorem”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här