Unbiased Selection of Decision Variables for Optimization

Mikael Yamanee-Nolin, Niklas Andersson, Bernt Nilsson, Mark Max-Hansen, Oleg Pajalic

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Complex chemical processes require complex simulation models. Selecting decision variables for optimization is increasingly difficult. This paper presents a study of a Subset Selection Algorithm (SSA) applied to the selection of decision variables to facili-tate a reduction of the decision variable combination sets to consider for a process designer, aimed towards improving said selection, optimization, and thereby resource efficiency. The results help conclude that SSA is able to reduce the consideration set of decision variable combinations for the process designer, and selects combination sets that are more effective in terms of minimizing the objective.
Originalspråkengelska
Titel på värdpublikation27 European Symposium on Computer Aided Process Engineering
RedaktörerAntonio Espuña, Moisès Graells, Luis Puigjaner
FörlagElsevier
Sidor253-258
Antal sidor6
Volym40
ISBN (tryckt)978-0-444-63965-3
DOI
StatusPublished - 2017 okt. 1
Evenemang27th European Symposium on Computer Aided Process Engineering - Porta Fira, Barcelona, Spanien
Varaktighet: 2017 okt. 12017 nov. 5

Publikationsserier

NamnComputer Aided Chemical Engineering
FörlagElsevier
Volym40
ISSN (tryckt)1570-7946

Konferens

Konferens27th European Symposium on Computer Aided Process Engineering
Förkortad titelESCAPE27
Land/TerritoriumSpanien
OrtBarcelona
Period2017/10/012017/11/05

Ämnesklassifikation (UKÄ)

  • Kemiteknik

Fingeravtryck

Utforska forskningsämnen för ”Unbiased Selection of Decision Variables for Optimization”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här