Uniform Bounds on the Relative Error in the Approximation of Upper Quantiles for Sums of Arbitrary Independent Random Variables

Michael J Klass, Krzysztof Nowicki

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Fix any n≥1. Let X~1,…,X~n be independent random variables. For each 1≤j≤n, X~j is transformed in a canonical manner into a random variable Xj. The Xj inherit independence from the X~j. Let sy and s∗y denote the upper 1y th −−− quantile of Sn=∑nj=1Xj and S∗n=sup1≤k≤nSk, respectively. We construct a computable quantity Q−−y based on the marginal distributions of X1,…,Xn to produce upper and lower bounds for sy and s∗y. We prove that for y≥8
6−1γ3y/16Q−−3y/16≤s∗y≤Q−−y
where
γy=12wy+1
and wy is the unique solution of
(wyeln(yy−2))wy=2y−4
for wy>ln(yy−2), and for y≥37
19γu(y)Q−−u(y)<sy≤Q−−y
where
u(y)=3y32(1+1−643y−−−−−−√).
The distribution of Sn is approximately centered around zero in that P(Sn≥0)≥118 and P(Sn≤0)≥165. The results extend to n=∞ if and only if for some (hence all) a>0
∑j=1∞E{(X~j−mj)2∧a2}<∞.
Originalspråkengelska
Sidor (från-till)1-25
TidskriftJournal of Theoretical Probability
Volym28
Nummer1
DOI
StatusPublished - 2015

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Uniform Bounds on the Relative Error in the Approximation of Upper Quantiles for Sums of Arbitrary Independent Random Variables”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här