Uniform Random Covering Problems

Henna Koivusalo, Lingmin Liao, Tomas Persson

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Motivated by the random covering problem and the study of Dirichlet uniform approximable numbers, we investigate the uniform random covering problem. Precisely, consider an i.i.d. sequence ω = (ωn)n≥1 uniformly distributed on the unit circle &x1D54B; and a sequence (rn)n≥1 of positive real numbers with limit 0. We investigate the size of the random set U(ω) := {y ∈ &x1D54B;: ∀N ≫ 1, ∃n ≤ N, s.t. |ωn - y| < rN}. Some sufficient conditions for U(ω) to be almost surely the whole space, of full Lebesgue measure, or countable, are given. In the case that U(ω) is a Lebesgue null measure set, we provide some estimations for the upper and lower bounds of Hausdorff dimension.

Originalspråkengelska
Sidor (från-till)455-481
Antal sidor27
TidskriftInternational Mathematics Research Notices
Volym2023
Nummer1
DOI
StatusPublished - 2023 jan. 1

Bibliografisk information

Publisher Copyright:
© The Author(s) 2021. Published by Oxford University Press.

Ämnesklassifikation (UKÄ)

  • Matematisk analys

Fingeravtryck

Utforska forskningsämnen för ”Uniform Random Covering Problems”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här