Upgrade Methods for Stratified Sensor Network Self-Calibration

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Estimating receiver and sender positions is often solved using a stratified, two-tiered approach. In the first step the problem is converted to a low-rank matrix estimation problem. The second step can be seen as an affine upgrade. This affine upgrade is the focus of this paper. In the paper new efficient algorithms for solving for the upgrade parameters using minimal data are presented. It is also shown how to combine such solvers as initial estimates, either directly or after a hypothesis and test step, in optimization of likelihood. The system is verified on both real and synthetic data.

Originalspråkengelska
Titel på värdpublikation2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor4851-4855
Antal sidor5
ISBN (elektroniskt)9781509066315
DOI
StatusPublished - 2020
Evenemang2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spanien
Varaktighet: 2020 maj 42020 maj 8

Publikationsserier

NamnICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volym2020-May
ISSN (tryckt)1520-6149

Konferens

Konferens2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Land/TerritoriumSpanien
OrtBarcelona
Period2020/05/042020/05/08

Ämnesklassifikation (UKÄ)

  • Kommunikationssystem

Fingeravtryck

Utforska forskningsämnen för ”Upgrade Methods for Stratified Sensor Network Self-Calibration”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här