Urban Navigation with LTE using a Large Antenna Array and Machine Learning

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

87 Nedladdningar (Pure)

Sammanfattning

Channel fingerprinting entails associating a point in space with measured properties of a received wireless signal. If the propagation environment for that point in space remains reasonably static with time, then a receiver with no knowledge of its own position experiencing a similar channel in the future might reasonably infer proximity to the original surveyed point. In this article, measurements of downlink LTE Common Reference Symbols from one sector of an eNodeB are used to generate channel fingerprints for a passenger vehicle driving through a dense urban environment without line-of-sight to the transmitter. Channel estimates in the global azimuthal-delay domain are used to create a navigation solution with meter-level accuracy around a city block.
Originalspråkengelska
Titel på värdpublikation2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring)
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Antal sidor5
ISBN (elektroniskt)978-1-6654-8243-1
DOI
StatusPublished - 2022 juni 22
EvenemangIEEE 95th Vehicular Technology Conference: (VTC2022-Spring) - Helsinki, Finland
Varaktighet: 2022 juni 192022 juni 22

Konferens

KonferensIEEE 95th Vehicular Technology Conference: (VTC2022-Spring)
Land/TerritoriumFinland
OrtHelsinki
Period2022/06/192022/06/22

Ämnesklassifikation (UKÄ)

  • Kommunikationssystem

Fingeravtryck

Utforska forskningsämnen för ”Urban Navigation with LTE using a Large Antenna Array and Machine Learning”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här