Variational auto-encoders with Student’s t-prior

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

We propose a new structure for the variational auto-encoders (VAEs) prior, with the weakly informative multivariate Student’s t-distribution. In the proposed model all distribution parameters are trained, thereby allowing for a more robust approximation of the underlying data distribution. We used Fashion-MNIST data in two experiments to compare the proposed VAEs with the standard Gaussian priors. Both experiments showed a better reconstruction of the images with VAEs using Student’s t-prior distribution.
Originalspråkengelska
Titel på värdpublikationESANN 2019 - Proceedings
Undertitel på värdpublikationThe 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
ISBN (elektroniskt)978-287-587-065-0
StatusPublished - 2019
Evenemang27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning - Bruges, Belgien
Varaktighet: 2019 apr. 242019 apr. 26

Konferens

Konferens27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Förkortad titelESANN 2019
Land/TerritoriumBelgien
OrtBruges
Period2019/04/242019/04/26

Ämnesklassifikation (UKÄ)

  • Datavetenskap (datalogi)
  • Annan data- och informationsvetenskap

Fingeravtryck

Utforska forskningsämnen för ”Variational auto-encoders with Student’s t-prior”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här