Wavelet-based noise reduction for improved deconvolution of time-series data in dynamic susceptibility-contrast MRI.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

187 Nedladdningar (Pure)

Sammanfattning

Dynamic susceptibility-contrast (DSC) MRI requires deconvolution to retrieve the tissue residue function R(t) and the cerebral blood flow (CBF). In this study, deconvolution of time-series data was performed by wavelet-transform-based denoising combined with the Fourier transform (FT). Traditional FT-based deconvolution of noisy data requires frequency-domain filtering, often leading to excessive smoothing of the recovered signal. In the present approach, only a low degree of regularisation was employed while the major noise reduction was accomplished by wavelet transformation of data and Wiener-like filtering in the wavelet space. After inverse wavelet transform, the estimate of CBF.R(t) was obtained. DSC-MRI signal-versus-time curves (signal-to-noise ratios 40 and 100) were simulated, corresponding to CBF values in the range 10-60 ml/(min 100 g). Three shapes of the tissue residue function were investigated. The technique was also applied to six volunteers. Simulations showed CBF estimates with acceptable accuracy and precision, as well as independence of any time shift between the arterial input function and the tissue concentration curve. The grey-matter to white-matter CBF ratio in volunteers was 2.4 +/- 0.2. The proposed wavelet/FT deconvolution is robust and can be implemented into existing perfusion software. CBF maps from healthy volunteers showed high quality.
Originalspråkengelska
Sidor (från-till)113-118
TidskriftMagma
Volym18
Nummer3
DOI
StatusPublished - 2005

Ämnesklassifikation (UKÄ)

  • Radiologi och bildbehandling

Fingeravtryck

Utforska forskningsämnen för ”Wavelet-based noise reduction for improved deconvolution of time-series data in dynamic susceptibility-contrast MRI.”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här