Wavelet decomposition method for L2/TV-image deblurring

M. Fornasier, Y. Kim, A. Langer, C. B. Schönlieb

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

In this paper, we show additional properties of the limit of a sequence produced by the subspace correction algorithm proposed by Fornasier and Schönlieb [SIAM J. Numer. Anal., 47 (2009), pp. 3397-3428 for L2/TV-minimization problems. An important but missing property of such a limiting sequence in that paper is the convergence to a minimizer of the original minimization problem, which was obtained in [M. Fornasier, A. Langer, and C.-B. Schönlieb, Numer. Math., 116 (2010), pp. 645-685 with an additional condition of overlapping subdomains. We can now determine when the limit is indeed a minimizer of the original problem. Inspired by the work of Vonesch and Unser [IEEE Trans. Image Process., 18 (2009), pp. 509-523], we adapt and specify this algorithm to the case of an orthogonal wavelet space decomposition for deblurring problems and provide an equivalence condition to the convergence of such a limiting sequence to a minimizer. We also provide a counterexample of a limiting sequence by the algorithm that does not converge to a minimizer, which shows the necessity of our analysis of the minimizing algorithm.

Originalspråkengelska
Sidor (från-till)857-885
Antal sidor29
TidskriftSIAM Journal on Imaging Sciences
Volym5
Nummer3
DOI
StatusPublished - 2012
Externt publiceradJa

Bibliografisk information

Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.

Ämnesklassifikation (UKÄ)

  • Beräkningsmatematik

Fingeravtryck

Utforska forskningsämnen för ”Wavelet decomposition method for L2/TV-image deblurring”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här