Zero-crossing statistics for non-Markovian time series

Markus Nyberg, Ludvig Lizana, Tobias Ambjörnsson

    Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

    Sammanfattning

    In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.

    Originalspråkengelska
    Artikelnummer032114
    TidskriftPhysical Review E
    Volym97
    Nummer3
    DOI
    StatusPublished - 2018 mars 14

    Ämnesklassifikation (UKÄ)

    • Beräkningsmatematik
    • Biofysik
    • Annan fysik

    Fingeravtryck

    Utforska forskningsämnen för ”Zero-crossing statistics for non-Markovian time series”. Tillsammans bildar de ett unikt fingeravtryck.

    Citera det här